Terroir 2004 banner
IVES 9 IVES Conference Series 9 Architecture, microclimate, vine regulation, grape berry and wine quality: how to choose the training system according to the wine type ?

Architecture, microclimate, vine regulation, grape berry and wine quality: how to choose the training system according to the wine type ?

Abstract

This synthetic presentation deals with :
• A description of the variability and the main models of grapevine canopy architecture in the world.
• A precision on the model « potential exposed leaf area SFEp », which estimates the potential of net carbon balance of the plant, and shows a regulating effect of high SFEp levels on production decrease.
• A presentation of plant global regulating processes influenced by the training system on the basis of the biological triptych theory : relation between (SFEp) and dry matter production (« puissance ») fitted by vigour ; relation between SFEp and bunch microclimate fitted by leaf exposure/bunch exposure ratio.
• The stability of the microclimatic equilibrium between leaf and bunch due to the architecture, in comparison with general climatic variations (Multicriteria Climatic Classification).
• Some consequences of SFEp and berry microclimate variations on Syrah wine typeness and quality, on the basis of a comparison in a dry « terroir » between the Vertical trellis, the truncated Lyre, the Lyre-volume.
• A general proposal over a 30 year experience of the most suitable training systems according to the objectives of production and quality. A special focus is made on the choice of the training system in function of the wine typeness (ie : « Lyre wine » concept).

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A Carbonneau

IHEV (High Study Institute of Vine and Wine), Agro Montpellier (France)

Contact the author

Keywords

Architecture, training system, microclimate, canopy, leaf, exposed leaf area, vigour, production, grapeberry, wine quality

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Isolated Antarctic soil yeasts with fermentative capacity with potential use in the wine industry

The wine industry is currently on the search for new aromas and less browning in their products. In the improvement process of wine, lower fermentation temperatures have been considered, however, the yeasts in the market cannot tolerate such temperatures

The social construction of wine-growing areas: the “Graves de Bordeaux”

«Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne.

NEUROPROTECTIVE AND ANTI-INFLAMMATORY PROPERTIES OF HYDROXYTYROSOL: A PROMISING BIOACTIVE COMPONENT OF WINE

Hydroxytyrosol (HT) is a phenolic compound present in olives, virgin olive oil and wine. HT has attracted great scientific interest due to its biological activities which have been related with the ortho-dihydroxy conformation in the aromatic ring. In white and red wines, HT has been detected at concentrations ranging from 0.28 to 9.6 mg/L and its occurrence has been closely related with yeast metabolism of aromatic amino acids by Ehrlich pathway during alcoholic fermentation. One of the most promising properties of this compound is the neuroprotective activity against pathological mechanisms related with neurode-generative disorders including Alzheimer’s and Parkinson’s disease.

Étude de l’adaptation des cépages Muscat à petits grains et Muscat d’Alexandrie dans l’A.O.C. Muscat de Rivesaltes

L’A.O.C. Muscat de Rivesaltes prévoit l’utilisation de 2 cépages Muscats : le Muscat à petits grains (M.P.G) et le Muscat d’Alexandrie (M.A).

INFLUENCES OF SO2 ADDITION AND STORAGE CONDITIONS IN THE DETERMINATION OF MEAN DEGREE OF POLYMERIZATION OF PROANTHOCYANIDINS IN AGED RED WINES

The structural diversity is one of the most remarkable characteristics of proanthocyanidins (PA). Indeed, PA in wines may vary in the B-ring and C-ring substitutes, the C-ring stereochemistry, the degree of polymerization (DP) and the linkage between the monomers. Knowing in detail the structural characteristics of the PA of a wine can help us to understand and modulate several sensorial characteristics of the wine, such as color, antioxidant properties, flavor, and mouthfeel properties. In the last years was discovered and confirmed the presence of sulfonated monomeric and oligomeric flavan-3-ols in wine [1], as well as was pointed out their importance in wine quality [1,2].