The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Methods and Results: The present work was carried out in 2019 with a set of seven varieties selected to monitor the aforementioned ratios in musts obtained during berries development: three of them red (Bobal, Tinto Velasco and Syrah), managed with irrigation, and the other three white (Airén, Malvar and Albillo Real) kept without irrigation; the seventh, Tempranillo, was managed with or without irrigation. 

Monitoring the dynamics of isotope ratios was undertaken through sampling of grapes carried out periodically, from shortly before closing cluster to maturity. In obtained musts, δ13C and δ18O were determined by mass spectrometry of isotope ratios.

The small changes observed between samples in δ13C in a specific variety did not seem to follow any pattern. In most cases, the comparisons of means performed showed no significant differences between samples. However, differences were observed between the two management systems: irrigated and rainfed; in dry conditions, with the stomatal closure, 13C isotopic discrimination declined during photosynthesis, and the ratio then increased.

This was not so with δ18O, where the comparisons of means always showed significant differences between samples. Dynamics of δ18O seemed to adapt, in this case, to a double curve pattern (cubic polynomial): the intense increase in the ratio of the first stages of fruit development was followed by a phase of slight decline, which lasted up to 15 or 20 days before harvest, at which point the ratio increased again. There were both inter-varietal and between management system differences: musts in early harvest varieties showed higher δ18O values than late varieties, while the isotopic enrichment was lower for this isotopic ratio in irrigated vines.

Conclusions: Differences in the narrow margin in which δ13C values of the grapes are maintained throughout their development seemed to respond more to the crop management practice than to the variety. However, the notable changes in δ18O values seem to be due to a complex mechanism that involves the discharge of water in the grapes from the phloem at beginning of ripening and the loss of water due to transpiration through the skin.

Significance and Impact of the Study: In the search for the genotypes with the highest water efficiency that effectively respond to the proliferation and dilation of drought periods that are expected in many regions, it is urgent to explore the existing genetic variability. In this sense, δ13C and δ18O could be useful tools to take into account in any research related to water use by cultivars at physiological or agronomic levels.

Authors: Adelaida Mena Morales*, Juan Luis Chacón Vozmediano, Rosa Mª Sánchez-Gil Jimeno, Jesús Martínez Gascueña

Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal de Castilla-La Mancha (IRIAF), IVICAM, Ctra. Toledo-Albacete s/n, 13700 Tomelloso, Ciudad Real, Spain


Keywords: Grapevine, genotypes, musts, δ13C dynamics, δ18O dynamics, IRMS

Related Posts

Share via
Copy link
Powered by Social Snap