Terroir 2004 banner
IVES 9 IVES Conference Series 9 Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

Abstract

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et à la véraison. La végétation a été manipulé pour avoir les rameaux sur le même cordon orientés une partie vers le haut (phototropiques) et l’autre vers le bas (géotropiques). 
L’orientation vers le bas a réduit la longueur et la surface foliaire du rameau principal et des entre coeurs. Quand le rameau est orienté vers le bas les entre coeurs sur le même rameau sont plus homogènes. Le potentiel hydrique foliaire et de tige à midi évalué sur la feuille basale et apicale était inférieur dans l’orientation vers le bas au confronte de l’orientation vers le haut. Cela était particulièrement prononcé pendant la période de maturation du raisin. L’activité photosynthétique des feuilles basale et apicale des rameaux orientés vers le haut était plus haute que celle des rameaux orientés vers le bas, probablement, à cause des conditions microclimatiques plus favorables. Le poids, le volume et la longueur des grappes n’ont pas été sensiblement influencés par orientation du rameau. L’orientation vers le haut a sensiblement augmenté le glucose et l’acide tartrique des baies, le saccharose, l’acide malique et l’acide citrique étaient pratiquement inchangés. Moins d’eau a été perdue par les peaux des baies et cela a favorisé l’intensité de la couleur. Les résultats ont des implications importantes pour l’uniformité de composition de la baie et pour le choix du système de conduite dans les différents terroirs. 

The effect of shoot orientation during two growth seasons (2002/2003 and 2003/2004) on physiological, vegetative and reproductive parameters was investigated in the Stellenbosch area in a Merlot/R99 vineyard with a vertical trellising system. Vines were spaced 2.7 X 1.5 m in north-south orientated rows. Micro-sprinkler irrigation was applied at pea size berry and at vèraison stages. Observations were done on vines with a natural distribution and orientation of phototropically (upward) and geotropically (downward) shoots on the same cordon.
Soil water typically varied according to the progress in the season and with soil depth, decreasing towards the end of the season and increasing with depth. Geotropic orientation reduced the primary and lateral shoot length as well as the primary and secondary shoot leaf area. With phototropic shoot position, secondary shoots were more evenly distributed along the primary shoots. Basal and apical stem and leaf water potential was lower with geotropic orientation than with phototropic orientation. This was particularly pronounced during the ripening period. In spite of this, basal and apical leaf photosynthetic activity of the phototropically orientated shoots was higher than that of the geotropically orientated shoots, most probably because of more favourable microclimatic conditions experienced by the former. Bunch mass and volume and length of bunches were not significantly affected by shoot orientation. Phototropic orientation of shoots noticeably increased glucose and tartaric acid contents of the berries, whereas sucrose, malic acid and citric acid contents were virtually unaffected. In phototropically orientated shoots, less water was lost by the skins, favouring skin colour intensity. The results have important implications for bunch and berry composition uniformity and for trellising system selection on different terroirs

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. Pisciotta (1), R. Di Lorenzo (1) M.G.Barbagallo (1), C.G. Volschenk (2) & J.J. Hunter (2)

(1) Dipartimento di Colture Arboree, Università degli Studi di Palermo
Viale delle Scienze 11, 90128 – Palermo, Sicily, Italy
(2) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Merlot, shoot orientation, vegetative growth, photosynthetic activity, water potential, light interception, grape composition

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Terroir traceability in grapes, musts and wine: results of research on Gewürztraminer and Sauvignon Blanc grape varieties in northern Italy

In the study of terroir, a separate analysis of its many component factors can be of great help in accurately identifying a vineyard’s natural elements that impact wine quality and typicity. This research used a dedicated pluri-disciplinary approach to investigate the ecological characteristics, including geology and geographical features, of 14 vineyards that produce Gewürztraminer and Sauvignon Blanc cultivars in the alpine Alto Adige DOC wine region. Both the geopedological method using Vineyards Geological Identity (VGI) and the new Solar Radiaton Identity (SRI) topoclimatic classification method were used to provide analytical measurements and qualitative/quantitative characterisations. In addition, wide-ranging targeted and untargeted oenological and chemical analyses were carried out on grapes, musts and wines to correlate the soils’ geomineral and physical conditions with the biochemical properties of their fruits and wines. The research identified strong correlations between vineyard geo-identity and wine biofingerprint, confirming a mineral traceability of strontium rubidium ratio and some minerals distinctive to the local geology, such as K, Ca, Ag, Ba and Mn.  The study also discovered that particular geomineral and physical soil conditions of the studied vineyards are related to the different amount of amino acids, primary varietal aromas and polyphenols found in grapes, musts and wines. The research confirmed that winemaking technologies support oenological quality, although in some cases, human practices can overpower certain characteristic elements in wine, erasing the typical imprint left by the vineyards’ natural terroir, which becomes less traceable. Terroir abiotic ecological factors and vineyard identity can be classified in detail using the new VGI and SRI analysis methods to discover interrelationships between geo-pedological and topoclimatic conditions that impact wine quality. These methods are also helpful in identifying which ecological elements are exclusive to a particular vineyard or wine sub-region.

Towards more coherent rules for alcohol labelling in the European Union

In its 2020 beating cancer plan, the european commission announced plans for mandatory warning signs for alcoholic beverages. However, no concrete legislative proposal has been put forward so far. Instead, ireland passed national legislation in 2023 that requires warning signs for all alcoholic beverages from 2026. Despite significant effects for the common market, the eu commission did not this challenge this law in the so-called tris notification procedure. We argue that the commission’s inaction is consistent with the case law of the european court of justice: in the absence of harmonized rules, member states have a large margin of discretion to enact national health measures.

Monitoring of alcoholic fermentation: development of an applicable in-line system

Alcoholic fermentation plays a crucial role in the winemaking process. In addition to producing ethanol, it results in the formation of various secondary metabolites that significantly influence the wine’s characteristics.

Microwaves, an auxiliary tool to improve red wine quality in warm climates

AIM Current winery efforts in Spanish warm climate regions, as Andalusia, are aimed at red wine production in spite of sub-optimal climatological conditions

Oenological potential of cv. Tortojona: A minority grape variety from Extremadura, southwest Spain

This work, included in the VAVEGEX project, aims to evaluate the oenological, phenolic, chromatic and sensory characteristics of the grapes, must and wines produced from cv. Tortojona, minority variety grown in Extremadura region (Southwest, Spain).