Terroir 2004 banner
IVES 9 IVES Conference Series 9 Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

Phototropic and geotropic shoot orientation: effect on physiological, vegetative and reproductive parameters

Abstract

[English version below]

On a étudié l’effet de l’orientation des rameaux sur les paramètres physiologiques, végétatifs et reproductif durant deux saisons de croissance (2002/2003 et 2003/2004) dans la région de Stellenbosch dans une vignoble du cépage Merlot sur 99R conduite en espalier et taillé à cordon coursonné. Les vignes étaient espacées 2.7 x 1.5 m. L’irrigation a été appliquée quand la baie avait la dimension d’un pois et à la véraison. La végétation a été manipulé pour avoir les rameaux sur le même cordon orientés une partie vers le haut (phototropiques) et l’autre vers le bas (géotropiques). 
L’orientation vers le bas a réduit la longueur et la surface foliaire du rameau principal et des entre coeurs. Quand le rameau est orienté vers le bas les entre coeurs sur le même rameau sont plus homogènes. Le potentiel hydrique foliaire et de tige à midi évalué sur la feuille basale et apicale était inférieur dans l’orientation vers le bas au confronte de l’orientation vers le haut. Cela était particulièrement prononcé pendant la période de maturation du raisin. L’activité photosynthétique des feuilles basale et apicale des rameaux orientés vers le haut était plus haute que celle des rameaux orientés vers le bas, probablement, à cause des conditions microclimatiques plus favorables. Le poids, le volume et la longueur des grappes n’ont pas été sensiblement influencés par orientation du rameau. L’orientation vers le haut a sensiblement augmenté le glucose et l’acide tartrique des baies, le saccharose, l’acide malique et l’acide citrique étaient pratiquement inchangés. Moins d’eau a été perdue par les peaux des baies et cela a favorisé l’intensité de la couleur. Les résultats ont des implications importantes pour l’uniformité de composition de la baie et pour le choix du système de conduite dans les différents terroirs. 

The effect of shoot orientation during two growth seasons (2002/2003 and 2003/2004) on physiological, vegetative and reproductive parameters was investigated in the Stellenbosch area in a Merlot/R99 vineyard with a vertical trellising system. Vines were spaced 2.7 X 1.5 m in north-south orientated rows. Micro-sprinkler irrigation was applied at pea size berry and at vèraison stages. Observations were done on vines with a natural distribution and orientation of phototropically (upward) and geotropically (downward) shoots on the same cordon.
Soil water typically varied according to the progress in the season and with soil depth, decreasing towards the end of the season and increasing with depth. Geotropic orientation reduced the primary and lateral shoot length as well as the primary and secondary shoot leaf area. With phototropic shoot position, secondary shoots were more evenly distributed along the primary shoots. Basal and apical stem and leaf water potential was lower with geotropic orientation than with phototropic orientation. This was particularly pronounced during the ripening period. In spite of this, basal and apical leaf photosynthetic activity of the phototropically orientated shoots was higher than that of the geotropically orientated shoots, most probably because of more favourable microclimatic conditions experienced by the former. Bunch mass and volume and length of bunches were not significantly affected by shoot orientation. Phototropic orientation of shoots noticeably increased glucose and tartaric acid contents of the berries, whereas sucrose, malic acid and citric acid contents were virtually unaffected. In phototropically orientated shoots, less water was lost by the skins, favouring skin colour intensity. The results have important implications for bunch and berry composition uniformity and for trellising system selection on different terroirs

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. Pisciotta (1), R. Di Lorenzo (1) M.G.Barbagallo (1), C.G. Volschenk (2) & J.J. Hunter (2)

(1) Dipartimento di Colture Arboree, Università degli Studi di Palermo
Viale delle Scienze 11, 90128 – Palermo, Sicily, Italy
(2) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Merlot, shoot orientation, vegetative growth, photosynthetic activity, water potential, light interception, grape composition

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.

The impact of leaf canopy management on eco-physiology, wood chemical properties and microbial communities in root, trunk and cordon of Riesling grapevines (Vitis vinifera L.)

In the last decades, climate change required already adaptation of vineyard management. Increase in temperature and unexpected weather events cause changes in all phenological stages requiring new management tools. For example, defoliation can be a useful tool to reduce the sugar content in the berries creating differences in the wine profiles. In a ten-year field experiment using Riesling (Vitis vinifera L, planted 1986, Geisenheim, Germany), various mechanical defoliation strategies and different intensities were trialed until 2016 before the vineyard was uprooted. Wood was sampled from the plant compartments root, trunk, cordon and shoot for analyses of physicochemical properties (e.g. lignin and element content, pH, diameter), nonstructural carbohydrates and the microbial communities. The aim of the study was to investigate the influence of reduced canopy leaf area on the sink-source allocation into different compartments and potential changes of the fungal and prokaryotic wood-inhabiting community using a metabarcoding approach. Severe summer pruning (SSP) of the canopy and mechanical defoliation (MDC) above the bunch zone decreased the leaf area by 50% compared to control (C). SSP reduced the photosynthetic capacity, which resulted in an altered source-sink allocation and carbohydrate storage. With lower leaf area, less carbohydrates are allocated. This for example resulted in a decreased trunk diameter. Further, it affected the composition of the grapevine wood microbiota. SSP and MDC management changed significantly the prokaryotic community composition in wood of the root samples, but had no effect in other compartments. In general, this study found strong compartment and less management effects of the microbial community composition and associated physicochemical properties. The highest microbial diversities were identified in the wood of the trunk, and several species were recorded the first time in grapevine.

Effect of the addition of polysaccharides extracted for grape pomace and must on sensory and chemical composition of white wines

AIM: The objective of this work is to study the effect of the addition of polysaccharides extracted for grape pomace by-products and musts on sensory and chemical composition of white wines. Much of the waste obtained in the wine sector is not used, and they can have some valuable compounds, such as the polysaccharides (PS).

Flavonol and anthocyanin potential of Spanish minority grapes and its relationship with wine colour

Global climate change is currently affecting vine phenology and causing a decoupling between technological and phenolic maturity of the grapes [1]. Wine industry has to face the challenge of making quality wines from grapes with an unbalanced phenolic composition.

The use of elicitors in viticulture: a tool to obtain highly colored wines with a reduce alcohol content?

Climate change is causing a gap between the technological and phenolic maturity of grapes, resulting in wines with high alcohol content and low polyphenol concentration. Another phenomenon associated with high temperatures and whose effect is more pronounced if the harvest is delayed is the decrease in the acidity of the grapes, mainly in malic acid, and an increase in pH caused by the accumulation of potassium derived from the increase in temperature. Therefore, climate change and the effects it causes on the vine leads to unbalanced wines, with high alcohol content and lack of color, with green tannins, astringency and excessively low acidity if not corrected.