Macrowine 2021
IVES 9 IVES Conference Series 9 Tracking of sulfonated flavanol formation in a model wine during storage

Tracking of sulfonated flavanol formation in a model wine during storage

Abstract

AIM: The aim of this work was to determine the reaction products of bisulfite with grape seed flavanols and changes therein over different storage conditions in a model wine in order to gain knowledge of the formation of these compounds which could be markers of aging in wines stored under inappropriate conditions [1].

METHODS: A model wine solution (10% ethanol, 5 g tartaric acid, pH=3.6) with 15 g of commercial grape seed extract (tannin concentration, 6 g/L) and 5 g of Na2S2O5 was subjected to different storage conditions (temperatures 20, 37 and 60 ºC, during 3 months). Monomeric and dimeric flavanols and their sulfonated derivatives were analysed by HPLC-ESI-QTOF-MS/MS.

RESULTS: The sulfonation reaction gave rise to several non-galloylated and galloylated flavanol sulfonates, mainly products of (epi)catechin which were found at higher concentrations in the grape seed extract. Storage time led to the formation of these compounds, even though it was observed greater sulfonated flavanol concentrations at higher temperatures, increasing reaction speed. At 60 ºC, dimeric flavanols were quickly degraded, being a further factor for the sulfonated monomeric product rise in the same way as (epi)catechin concentrations from condensed tannins. 

CONCLUSIONS

Temperature contributed to the sulfonation reaction in a model wine, favouring the formation of sulphonared flavan-3-ols derivatives and tannin depolymerization. Our findings based on the study of sulfonated flavanols could be useful for better understanding the chemical changes during wine ageing.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Authors

Sergio Gómez-Alonso

Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Eduardo, GUISANTES-BATÁN, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. Rocío, BRAVO DE GRACIA, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Av. Camilo José Cela, 10, 13071 Ciudad Real, Spain. José, PÉREZ-NAVARRO, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain. Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain.

Contact the author

Keywords

SO2, phenolic compounds, temperature, grape seeds, ageing

Citation

Related articles…

Consequences of apical leaf removal on grapevine water status, heat damage, yield and grape ripening on Pinot n and Chardonnay

Climate change presents a significant challenge to grape growing worldwide as increased temperatures lead to wines with increased sugar and pH levels. Manipulation of the exposed leaf area is a powerful lever governing the assimilation and storage of non-structural carbohydrates in grapevines. Reducing the leaf-to-fruit ratio is now considered as a tool for adapting to hotter and dryer grape growing conditions.

Brettanomyces bruxellensis, born to live

The wine spoilage yeast Brettanomyces bruxellensis can be found at several steps in the winemaking process due to its resistance to multiple stress conditions. Among the resistance strategies, one could be the formation of biofilm, a lifestyle known to enhance persistence of microorganisms. In this study, we propose to characterize biofilm of B. bruxellensis in wine, especially through several microscopic analyses.

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

To what extent does vine balance actually drive fruit composition?

Context and purpose of the study ‐ Vine balance is a concept describing the relationship between carbon assimilation (usually estimated using a measure of vine vigour, e.g. pruning weight) and its utilisation for fruit production (usually estimated using harvest yield). Manipulating vine balance through leaf area or crop load adjustments affects the proportion of the vine’s total carbohydrate production required to mature the fruit. It is commonly considered that composition of the berry, and resulting wine, is strongly affected by vine balance.