Terroir 2004 banner
IVES 9 IVES Conference Series 9 The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

Abstract

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation. Canopy management was as follows: suckering (leaving only two shoots per bearer), tipping, vertical shoot positioning and removal of lateral shoots and yellow leaves in the bunch zone (Canopy 1); suckering (leaving three shoots per bearer), vertical shoot positioning as well as topping (Canopy 2); vertical shoot positioning and topping (Canopy 3). The field trial was conducted in the Paardeberg region on the farms Meerlus and Kersfontein. The vineyard at Meerlus was Cabernet franc/R99 with a high canopy density and a good root distribution, established on a sandy loam soil of granite origin, with a low subsoil pH and a high K content. The vineyard at Kersfontein was Cabernet Sauvignon/101-14 Mgt with a lower canopy density and a less extensive root distribution, also established on a sandy loam soil of granite origin, but with a low top- and subsoil pH and an excessively high K content.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

G.P. Engelbrecht (1) and D. Saayman (2)

(1) Agricultural Consultors International CC, 1 Techno Village, Meson Street, Technopark, 7600 Stellenbosch, Republic of South Africa
(2) Distell, Papegaaiberg, P.O. Box 778, 7599 Stellenbosch, Republic of South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Oxygen consumption and changes in chemical composition of young wines

The study of the capacity to consume oxygen of the wines is an aspect of great interest since it allows to analyse their useful life.

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée.

Ability of Saccharomyces cerevisiae strains to modulate the aroma of albariño wines

The objective of the present work is to evaluate the impact of three S. cerevisiae strains on the comprehensive aroma profile of Albariño wine along its shelf life.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.