Terroir 2004 banner
IVES 9 IVES Conference Series 9 The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

The influence of different fertiliser applications and canopy management practices on the potassium content and pH of juice and wine of Vitis vinifera L. cvs. Cabernet-Sauvignon and Cabernet franc

Abstract

In an attempt to reduce the pH of juice and wine, different fertiliser applications and canopy management practices were evaluated in South Africa in a field trial. Fertiliser treatments entailed no, CaSO4, Ca(OH)2, and MgSO4 fertilisation. Canopy management was as follows: suckering (leaving only two shoots per bearer), tipping, vertical shoot positioning and removal of lateral shoots and yellow leaves in the bunch zone (Canopy 1); suckering (leaving three shoots per bearer), vertical shoot positioning as well as topping (Canopy 2); vertical shoot positioning and topping (Canopy 3). The field trial was conducted in the Paardeberg region on the farms Meerlus and Kersfontein. The vineyard at Meerlus was Cabernet franc/R99 with a high canopy density and a good root distribution, established on a sandy loam soil of granite origin, with a low subsoil pH and a high K content. The vineyard at Kersfontein was Cabernet Sauvignon/101-14 Mgt with a lower canopy density and a less extensive root distribution, also established on a sandy loam soil of granite origin, but with a low top- and subsoil pH and an excessively high K content.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

G.P. Engelbrecht (1) and D. Saayman (2)

(1) Agricultural Consultors International CC, 1 Techno Village, Meson Street, Technopark, 7600 Stellenbosch, Republic of South Africa
(2) Distell, Papegaaiberg, P.O. Box 778, 7599 Stellenbosch, Republic of South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia / Germany. Part 1: specific GIS applications in viticulture

En vue d’une production économique de qualités des raisins optimales une connaissance des informations les plus différentes est importante. Les nouvelles technologies, telles qu’un SIG permettent de réunir les informations sur le terrain, la nature du sol, le danger d’érosion, le climat, la végétation, l’hydrographie, l’apparition de nuisible et de maladies, etc. Sur la base de cartes topographiques un SIG permet une vaste analyse, une appréciation des rapports complexes ainsi qu’une représentation cartographique. Sur la base de modélisations en trois dimensions du terrain avec le SIG, les ensembles de données saisies ainsi que leur classification au niveau local peuvent être utilisés dans la production de zonages régionaux.

Incidence de la nature du sol et du cépage sur la maturation du raisin, à Saint Emilion, en 1995

The AOC Saint-Emilion, one of the most prestigious in Bordeaux, is located on the right bank of the Dordogne upstream from Libourne. The vineyard is planted on Tertiary (Oligocene) and Quaternary geological formations, on which very varied soils have developed. Numerous studies have taken account of this heterogeneity and made it possible to better understand the functioning and viticultural potential of these soils (Duteau et al. 1981, Van Leeuwen, 1991).

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.