Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Abstract

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin. Dans ce travail, les trois principaux composants de l’effet terroir, à savoir le climat, le sol et le cépage ont été étudié simultanément. Le développement de la vigne et la constitution du raisin de Vitis vinifera L. cv Merlot, Cabernet franc et Cabernet-Sauvignon ont été comparés sur trois parcelles non irriguées, comportant respectivement un sol graveleux (G), un sol à sous-sol très argileux (C) et un sol sableux à nappe d’eau à portée des racines (S). L’effet du climat a été étudié à partir des variations climatiques annuelles (effet millésime) sur la période 1996-2003. Les effets du climat, du sol et du cépage ont été hautement significatif sur la plupart des variables mesurées. Sur une majorité de variables, l’effet du climat a été plus important que l’effet du sol et du cépage. La plupart des variables sont corrélées à l’intensité du déficit hydrique, qui a été évalué par la mesure du potentiel foliaire de base et par la mesure de la discrimination isotopique du carbone 13 sur les sucres du moût (δ13C). L’effet du climat et du sol semblent agir principalement par leur incidence sur le régime hydrique de la vigne.

Terroir can be defined as an interactive ecosystem, in a given place, including climate, soil and the vine. The three main components of terroir effect, soil, climate and cultivar, have been studied simultaneously. Vine development and berry composition of non-irrigated Vitis vinifera L. cv Merlot, Cabernet franc and Cabernet-Sauvignon were compared on a gravely soil (G), a soil with a heavy clay sub soil (C) and a sandy soil with a water table within the reach of the roots (S). The influence of climate was assessed with year-to-year climatic variations (vintage effect) over the period 1996 to 2003. Effects of climate, soil and cultivar on vine behaviour and berry ripening were highly significant. On most variables, the impact of climate was greater than the effect of soil and cultivar. Most variables were correlated with the intensity of vine water stress, which was assessed by measurements of pre-dawn leaf water potential and carbon isotope discrimination measured on grape sugar (δ13C). It is likely that the effect of climate and soil on fruit quality is mediated through their influence on vine water status.

DOI:

Publication date: January 13, 2022

Issue: Terroir 2004

Type: Article

Authors

C. van Leeuwen (1), P. Friant (1), M.-E. Jaeck (1) S. Kuhn (1) and O. Lavialle

(1) ENITA de Bordeaux, 1, Crs du G n ral de Gaulle, BP 201, 33175 Gradignan-cedex, France

Contact the author

Keywords

terroir, soil, climate, cultivar, vine, Vitis vinifera, Merlot, Cabernet franc, Cabernet-Sauvignon, water deficit, leaf water potential

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

A better understanding of the climate effect on anthocyanin accumulation in grapes using a machine learning approach

The current climate changes are directly threatening the balance of the vineyard at harvest time. The maturation period of the grapes is shifted to the middle of the summer, at a time when radiation and air temperature are at their maximum. In this context, the implementation of corrective practices becomes problematic. Unfortunately, our knowledge of the climate effect on the quality of different grape varieties remains very incomplete to guide these choices. During the Innovine project, original experiments were carried out on Syrah to study the combined effects of normal or high air temperature and varying degrees of exposure of the berries to the sun. Berries subjected to these different conditions were sampled and analyzed throughout the maturation period. Several quality characteristics were determined, including anthocyanin content. The objective of the experiments was to investigate which climatic determinants were most important for anthocyanin accumulation in the berries. Temperature and irradiance data, observed over time with a very thin discretization step, are called functional data in statistics. We developed the procedure SpiceFP (Sparse and Structured Procedure to Identify Combined Effects of Functional Predictors) to explain the variations of a scalar response variable (a grape berry quality variable for example) by two or three functional predictors (as temperature and irradiance) in a context of joint influence of these predictors. Particular attention was paid to the interpretability of the results. Analysis of the data using SpiceFP identified a negative impact of morning combinations of low irradiance (lower than about 100 μmol m−2 s−1 or 45 μmol m−2 s−1 depending on the advanced-delayed state of the berries) and high temperature (higher than 25oC). A slight difference associated with overnight temperature occurred between these effects identified in the morning.

Different soil types and relief influence the quality of Merlot grapes in a relatively small area in the Vipava Valley (Slovenia) in relation to the vine water status

Besides location and microclimatic conditions, soil plays an important role in the quality of grapes and wine. Soil properties influence…

Climate change – variety change?

In Franconia, the northern part of Bavaria in Germany, climate change, visible in earlier bud break, advanced flowering and earlier grape maturity, leads to a decrease of traditionally cultivated early ripening aromatic white wine varieties as Mueller-Thurgau (30 % of the wine growing area) and Bacchus (12 %). With the predicted rise of temperature in all European wine regions the conditions for white wine grape varieties will decline and the grapes themselves will lose a part of their aromatic and fruity expression. Variety change towards the cultivation of later ripening white wine varieties is a very expensive and long-term process, and must be accompanied by special marketing efforts.

Mapping of canopy features in commercial vineyards using machine vision

Vineyard canopy features such canopy porosity and fruit exposure influenced microclimate, fungal disease incidence and grape composition. An objective, rapid and non-invasive method to assess and map the canopy status is needed to apply in precision viticulture. A new method for canopy status assessment and mapping based on non-invasive machine vision was applied in commercial vineyards in this work.