Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Abstract

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin. Dans ce travail, les trois principaux composants de l’effet terroir, à savoir le climat, le sol et le cépage ont été étudié simultanément. Le développement de la vigne et la constitution du raisin de Vitis vinifera L. cv Merlot, Cabernet franc et Cabernet-Sauvignon ont été comparés sur trois parcelles non irriguées, comportant respectivement un sol graveleux (G), un sol à sous-sol très argileux (C) et un sol sableux à nappe d’eau à portée des racines (S). L’effet du climat a été étudié à partir des variations climatiques annuelles (effet millésime) sur la période 1996-2003. Les effets du climat, du sol et du cépage ont été hautement significatif sur la plupart des variables mesurées. Sur une majorité de variables, l’effet du climat a été plus important que l’effet du sol et du cépage. La plupart des variables sont corrélées à l’intensité du déficit hydrique, qui a été évalué par la mesure du potentiel foliaire de base et par la mesure de la discrimination isotopique du carbone 13 sur les sucres du moût (δ13C). L’effet du climat et du sol semblent agir principalement par leur incidence sur le régime hydrique de la vigne.

Terroir can be defined as an interactive ecosystem, in a given place, including climate, soil and the vine. The three main components of terroir effect, soil, climate and cultivar, have been studied simultaneously. Vine development and berry composition of non-irrigated Vitis vinifera L. cv Merlot, Cabernet franc and Cabernet-Sauvignon were compared on a gravely soil (G), a soil with a heavy clay sub soil (C) and a sandy soil with a water table within the reach of the roots (S). The influence of climate was assessed with year-to-year climatic variations (vintage effect) over the period 1996 to 2003. Effects of climate, soil and cultivar on vine behaviour and berry ripening were highly significant. On most variables, the impact of climate was greater than the effect of soil and cultivar. Most variables were correlated with the intensity of vine water stress, which was assessed by measurements of pre-dawn leaf water potential and carbon isotope discrimination measured on grape sugar (δ13C). It is likely that the effect of climate and soil on fruit quality is mediated through their influence on vine water status.

DOI:

Publication date: January 13, 2022

Issue: Terroir 2004

Type: Article

Authors

C. van Leeuwen (1), P. Friant (1), M.-E. Jaeck (1) S. Kuhn (1) and O. Lavialle

(1) ENITA de Bordeaux, 1, Crs du G n ral de Gaulle, BP 201, 33175 Gradignan-cedex, France

Contact the author

Keywords

terroir, soil, climate, cultivar, vine, Vitis vinifera, Merlot, Cabernet franc, Cabernet-Sauvignon, water deficit, leaf water potential

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.

Simulating the impact of climate change on viticultural systems in various European vineyards

Aim: Global climate change affects regional climates and hold implications for wine growing regions worldwide (Jones, 2007, 2015; van Leeuwen and Darriet, 2016). The prospect of 21st century climate change consequently is one of the major challenges facing the wine industry (Keller, 2010).

Varietal differences between Shiraz and Cabernet sauvignon wines revealed by yeast metabolism

This study investigated if compositional differences between Shiraz and Cabernet Sauvignon grape varieties could influence the production of yeast-derived compounds. This work was based on the analysis of 40 experimental red wines made in triplicate fermentations from grapes harvested from two consecutive vintages in New South Wales (Australia). Grapes were picked at three maturity stages using berry sugar accumulation as physiological indicator, from nine commercial vineyards located in three different climatic regions (temperate, temperate-warm and warm-hot). A range of 30 yeast-derived wine volatiles including esters and alcohols were quantified by HS/SPME-GC/MS. Ammonia, amino-acids and lipids were analysed in the corresponding grapes. The juice total soluble solids (°Brix) in addition to the wine alcohol and residual sugar levels were also measured. The influence of grape maturity on wine ester composition was also variety dependent, particularly for higher alcohol acetate and ethyl ester of branched acids. This study highlights that varietal differences observed in Shiraz and Cabernet Sauvignon wines involve fermentation-derived compounds irrespective of the site (soil, climate, viticultural practices).

Identification of important genomic regions controlling resistance to biotic and abiotic stresses in Vitis sp. through QTL meta-analysis

In the context of global change, the environmental conditions are expected to be more stressful for viticulture. The choice of the rootstock may play a crucial role to improve the adaptation of viticulture to new biotic and abiotic threats (Ollat et al., 2016). However, the selection of interesting traits in rootstock breeding programs is complex because of the combination of multiple targets in a same ideotype. In this sense, the integration of studies about the genetic architecture for desired biotic and abiotic response traits allow us to identify genomic regions to combine and those with interesting pleiotropic effects.

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.