Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Abstract

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin. Dans ce travail, les trois principaux composants de l’effet terroir, à savoir le climat, le sol et le cépage ont été étudié simultanément. Le développement de la vigne et la constitution du raisin de Vitis vinifera L. cv Merlot, Cabernet franc et Cabernet-Sauvignon ont été comparés sur trois parcelles non irriguées, comportant respectivement un sol graveleux (G), un sol à sous-sol très argileux (C) et un sol sableux à nappe d’eau à portée des racines (S). L’effet du climat a été étudié à partir des variations climatiques annuelles (effet millésime) sur la période 1996-2003. Les effets du climat, du sol et du cépage ont été hautement significatif sur la plupart des variables mesurées. Sur une majorité de variables, l’effet du climat a été plus important que l’effet du sol et du cépage. La plupart des variables sont corrélées à l’intensité du déficit hydrique, qui a été évalué par la mesure du potentiel foliaire de base et par la mesure de la discrimination isotopique du carbone 13 sur les sucres du moût (δ13C). L’effet du climat et du sol semblent agir principalement par leur incidence sur le régime hydrique de la vigne.

Terroir can be defined as an interactive ecosystem, in a given place, including climate, soil and the vine. The three main components of terroir effect, soil, climate and cultivar, have been studied simultaneously. Vine development and berry composition of non-irrigated Vitis vinifera L. cv Merlot, Cabernet franc and Cabernet-Sauvignon were compared on a gravely soil (G), a soil with a heavy clay sub soil (C) and a sandy soil with a water table within the reach of the roots (S). The influence of climate was assessed with year-to-year climatic variations (vintage effect) over the period 1996 to 2003. Effects of climate, soil and cultivar on vine behaviour and berry ripening were highly significant. On most variables, the impact of climate was greater than the effect of soil and cultivar. Most variables were correlated with the intensity of vine water stress, which was assessed by measurements of pre-dawn leaf water potential and carbon isotope discrimination measured on grape sugar (δ13C). It is likely that the effect of climate and soil on fruit quality is mediated through their influence on vine water status.

DOI:

Publication date: January 13, 2022

Issue: Terroir 2004

Type: Article

Authors

C. van Leeuwen (1), P. Friant (1), M.-E. Jaeck (1) S. Kuhn (1) and O. Lavialle

(1) ENITA de Bordeaux, 1, Crs du G n ral de Gaulle, BP 201, 33175 Gradignan-cedex, France

Contact the author

Keywords

terroir, soil, climate, cultivar, vine, Vitis vinifera, Merlot, Cabernet franc, Cabernet-Sauvignon, water deficit, leaf water potential

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

Is complex nutrition more advantageous than mineral nitrogen for the fermentative capacities of S. cerevisiae?

During alcoholic fermentation, nitrogen is an essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (yan) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species which may lead to economic losses. However, correcting this nitrogen deficiency is sometimes not enough to restore proper fermentation performance. This suggests the existence of other nutritional shortages.

Botrytis cinerea: Coconut or Catastrophe? Quantification of γ-Nonalactone in Botrytised and Non-Botrytised New Zealand Wines

g-Nonalactone has been identified as a significant contributor to the aroma profile of a range of wines and is associated with stonefruit and coconut descriptors.

Methyl jasmonate versus nano-methyl jasmonate. Effect on the tannin composition of monastrell grapes and wines

Tannins are very important for grape and wine quality, since they participate in several organoleptic wine characteristics such as astringency perception, bitterness, and the colour stability. The compositions in tannins in grapes and wines differs between seeds and skins. Tannin seeds contain a higher concentration of tannins than skin and has been associated with a coarse and more tannic notes in wines, by contrast, tannin skin are related to a greater softness in the wines.

Effect of alcoholic strength on the phenolic and furfural compounds of Brandy de Jerez aged in Sherry Casks®

Brandy is a spirit drink produced from wine spirit aged for at least six months in oak casks with a capacity of less than 1000 L and minimum alcohol by volume (ABV) of 36%. During the aging process, physicochemical and sensory changes take place. Manifested by colour, flavour or aroma variations that improve the quality of the initial distillate.