Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Hierarchy of the role of climate, soil and cultivar in terroir effect can largely be explained by vine water status

Abstract

Le terroir peut être défini comme un écosystème dans lequel la vigne interagit avec le climat et le sol et dont la résultante est le vin. Dans ce travail, les trois principaux composants de l’effet terroir, à savoir le climat, le sol et le cépage ont été étudié simultanément. Le développement de la vigne et la constitution du raisin de Vitis vinifera L. cv Merlot, Cabernet franc et Cabernet-Sauvignon ont été comparés sur trois parcelles non irriguées, comportant respectivement un sol graveleux (G), un sol à sous-sol très argileux (C) et un sol sableux à nappe d’eau à portée des racines (S). L’effet du climat a été étudié à partir des variations climatiques annuelles (effet millésime) sur la période 1996-2003. Les effets du climat, du sol et du cépage ont été hautement significatif sur la plupart des variables mesurées. Sur une majorité de variables, l’effet du climat a été plus important que l’effet du sol et du cépage. La plupart des variables sont corrélées à l’intensité du déficit hydrique, qui a été évalué par la mesure du potentiel foliaire de base et par la mesure de la discrimination isotopique du carbone 13 sur les sucres du moût (δ13C). L’effet du climat et du sol semblent agir principalement par leur incidence sur le régime hydrique de la vigne.

Terroir can be defined as an interactive ecosystem, in a given place, including climate, soil and the vine. The three main components of terroir effect, soil, climate and cultivar, have been studied simultaneously. Vine development and berry composition of non-irrigated Vitis vinifera L. cv Merlot, Cabernet franc and Cabernet-Sauvignon were compared on a gravely soil (G), a soil with a heavy clay sub soil (C) and a sandy soil with a water table within the reach of the roots (S). The influence of climate was assessed with year-to-year climatic variations (vintage effect) over the period 1996 to 2003. Effects of climate, soil and cultivar on vine behaviour and berry ripening were highly significant. On most variables, the impact of climate was greater than the effect of soil and cultivar. Most variables were correlated with the intensity of vine water stress, which was assessed by measurements of pre-dawn leaf water potential and carbon isotope discrimination measured on grape sugar (δ13C). It is likely that the effect of climate and soil on fruit quality is mediated through their influence on vine water status.

DOI:

Publication date: January 13, 2022

Issue: Terroir 2004

Type: Article

Authors

C. van Leeuwen (1), P. Friant (1), M.-E. Jaeck (1) S. Kuhn (1) and O. Lavialle

(1) ENITA de Bordeaux, 1, Crs du G n ral de Gaulle, BP 201, 33175 Gradignan-cedex, France

Contact the author

Keywords

terroir, soil, climate, cultivar, vine, Vitis vinifera, Merlot, Cabernet franc, Cabernet-Sauvignon, water deficit, leaf water potential

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.

Protection of grapevines from red blotch by understanding mechanistic basis of its infection

Currently, grapevine is host to a large number of pathogenic agents, including 65 viruses, five viroids and eight phytoplasmas. Needless to say, these pathogens, especially viruses responsible for several ‘infectious degeneration’ or ‘decline’ cause great distress to wine makers and grape growers, let alone the large economic losses incurred by the wine industry. A recent addition to this wide repertoire of grapevine viruses is a new viral disease known as Red Blotch in viticulture parlance. Its causal organism, Grapevine red blotch associated virus (GRBaV), discovered in 2008 is a newly identified virus of grapevines and a putative member of a new genus within the family Geminiviridae.

A pragmatic modeling approach to assessing vine water status

Climate change scenarios suggest an increase in temperatures and an intensification of summer drought. Measuring seasonal plant water status is an essential step in choosing appropriate adaptations to ensure yields and quality of agricultural produce. The water status of grapevines is known to be a key factor for yield, maturity of grapes and wine quality. Several techniques exist to measure the water status of soil and plants, but stem water potential proved to be a simple and precise tool for different plant species.

Double success of combining technical management with low pesticide inputs in the vineyard to obtain PDO wines in France

Viticulture is a major contributor to the antagonism of positive reputation and negative environmental impacts of agriculture. Vine contributes to structure landscape in the world, resulting, for example, in the delimitation of protected designations of origin (PDO). PDO vine is currently subject to the double challenge of sustainability and climate change adaptation. As vine is very sensitive to diseases and pests, vine requires a high use of pesticides to achieve its quality and yield goals. This high need for pesticides is the most important negative impact of environmental components.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.