Terroir 2020 banner
IVES 9 IVES Conference Series 9 Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Application of fluorescence spectroscopy with multivariate analysis for authentication of Shiraz wines from different regions

Abstract

Aim: To investigate the possibility of utilising simultaneous measurements of absorbance-transmittance and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics, as a robust method that gives rapid results for classification of wines from different regions of South Australia according to their Geographical Indication (GI), and to gain insight into the effect of terroir on inter regional variation.

Methods and Results: Additionally, to obtaining various colour parameters, the A-TEEM technique enables the “fingerprint” of wine samples to be attained in response to the presence of fluorophoric compounds. This is accomplished by recording a three-dimensional excitation-emission matrix (EEM) over multiple excitation and emission wavelengths, which can then be analysed using multivariate statistical modelling to classify wines. Shiraz wine samples (n = 134) from six different GIs of South Australia (Barossa Valley, Clare Valley, Eden Valley, Langhorne Creek, McLaren Vale, and Riverland) were analysed and absorbance spectra, hue, intensity, CIE L*a*b, CIE 1931, and EEMs were recorded for each sample. EEM data were evaluated according to the cross-validation model built with extreme gradient boost discriminant analysis (XGBDA) using score probability to assess the accuracy of classification according to the region of origin. Preliminary results have shown a high prediction ability and the data extracted from A-TEEM could be used to investigate phenolics as potential chemical markers that may provide effective regional discrimination.

Conclusions: 

The molecular fingerprinting capability and sensitivity of EEM in conjunction with multivariate statistical analysis of the fluorescence data using the XGBDA algorithm provided sufficient chemical/spectral information to facilitate accurate classification of Shiraz wines according to the region of origin. A-TEEM coupled with XGBDA modelling appears to be a promising tool for wine authentication according to its geographical origin.

Significance and Impact of the Study: Having tangible evidence that Australian fine wines may be discriminated on the basis of geographical origin, will help to improve the international reputation of Australian wines and increase global competitiveness. Understanding of the important regional chemical parameters would allow grape growers and winemakers to optimise their viticultural and winemaking practices to preserve these characteristics of their terroir. Moreover, verifying the content in the bottle according to the label descriptions with a rapid method, has the potential to verify product provenance and counteract fraud in cases where wine of inferior/questionable quality or contaminated wine is presented as originating from Australia.

DOI:

Publication date: March 25, 2021

Issue: Terroir 2020

Type : Video

Authors

R.K.R. Ranaweeraa, A. M. Gilmoreb, D.L. Caponea, c, S.E.P. Bastiana,c, D.W Jefferya, c*

aDepartment of Wine and Food Science, The University of Adelaide, South Australia, Australia
bHORIBA Instruments Inc., 20 Knightsbridge Rd., Piscataway, NJ 08854, United States
cAustralian Research Council Training Centre for Innovative Wine Production, The University of Adelaide

Contact the author

Keywords

Geographical origin, chemometrics, modelling, excitation-emission matrix

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

Nivel de infección y saneamiento del virus del entrenudo corto (GFLV) en el cv. de vid Pedro Ximenez en la denominación de origen Montilla-Moriles (DOMM)

Mediante análisis por test ELISA de hojas de vides (Vitis vinifera L.) del cv. Pedro Ximénez, procedentes de 28 parcelas experimentales distribuidas por la DOMM

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Wines empirical perception and growers management practices in the Anjou Villages Brissac vineyard (France)

The concept of viticultural terroir includes soil, sub-soil, and climatic factors but also many management viticultural and oenological practices which are chosen according to know-how of the winegrowers.

Predatory Arthropods associated with potential locally-adapted native insectary plants for Australian vineyards

Three locally-adapted native plants were evaluated to determine their capacity to provide insectary benefits to predatory arthropods in association with vineyards, and thereby to enhance biological control of insect pests. Native plants are preferred as supplementary flora, as they are naturally adapted to Australia’s climatic conditions.