Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Abstract

[English version below]

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes doses d’arrosage: 0% et 20% de ETo. L’essai experimental a été situé à Valladolid (Castilla et León, Espagne). Les ceps ont été plantés en 1993, sur porte-greffe 110R, et ont été conduites en espalier, menés en cordon Royat bilateral et taillés en coursons, avec une densité de plantation de 2645 ceps/ha (2.7 m x 1.4 m).
L’aplication d’irrigation a permis d’apprécier une augmentation du potentiel hydrique foliaire et un accroissement important de la production de matière sèche et du rendement. Le stress hydrique dérivé de l’absence d’irrigation a provoqué un accroissement de la concentration de sucres, le pH et l’acidité totale, ainsi que la concentration polyphénolique du moût par la diminution du poids de baie. Dans les conditions de l’essai (zone de la Vallée du Douro) et avec la densité de plantation utilisée, l’application de doses modérées d’irrigation cause une amélioration de l’état hydrique de la vigne et une importante augmentation de la productivité du vignoble et du rendement, mais il peut occasionner une réduction de la qualité du raisin de Tempranillo.

This study analyzes the influence of moderate irrigation on plant water status (leaf water potential), productivity (dry matter and yield) and fruit quality (berry size, ºBrix, pH, titratable acidity, phenolic compounds) of Tempranillo grapevine in the Duero river Valley, at the A.O. Cigales. Irrigation treatments applied were: 0% and 20% ETo. The experimental trial was located in Valladolid (Castilla y León, Spain). The 12-year-old vines grafted onto 110 Richter rootstock were vertical trellis trained, through bilateral cordon, and spur pruned. Vine spacing was 2645 vines per ha (2.7 m x 1.4 m).
The application of irrigation has increased the leaf water potential level and provoked an important increase of dry matter production as well as yield. The water stress caused by the lack of watering has increased sugar concentration, pH, titratable acidity and phenolic compounds concentration, through the berry size reduction. The application of moderate doses of irrigation causes an improvement of water status and an important increase of productivity and yield conditioned by the climatic characteristics of the zone (Valley of the Duero river) and the soil of the experimental trial. Nevertheless, a reduction of the must quality of Tempranillo grapevine can take place due to the irrigation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Yuste, J.L. Asenjo, H. Martín, R. Yuste

Instituto Tecnológico Agrario de Castilla y León. Valladolid. Spain

Contact the author

Keywords

Acidity, berry size, dry matter, leaf water potential, polyphenols, soluble solids

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Sensory profile of wines obtained from disease-resistant varieties in La Rioja

The European wine industry is facing multiple challenges derived from climate change and the pressure of different fungal diseases that are compromising the production of traditional varieties. A sustainable alternative maybe the adoption of resistant varieties.
In this study, we have evaluated the enological potential of 9 resistant varieties (5 white and 4 red varieties) in La Rioja. Microvinifications were carried out with three biological replications. Oenological parameters were very diverse with acid content varying from 2.6 g/L to 6.6 g/L.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Typology of Terroirs around the world

It seems implausible that the geographical development of the vineyards could have been affected by a shift in the positions of the Earth’continents

Influence of climate change conditions (elevated CO2 and temperature) on the grape composition of five tempranillo (Vitis vinifera L.) Somatic variants

The current levels of greenhouse gas emissions are expecting to provoke a change on the environmental conditions which, among others, will include a rise of global mean surface temperature and an increment of atmospheric CO2 levels (IPCC, 2014), known as climate change. The response of grapevine (Vitis vinifera L.), one of the most important crops in Europe, from both a cultural and economic point of view, is not completely understood yet and the studies considering the interaction between factors are scarce. Besides, the potential variety of responses among somatic variants needs to be studied in order to be exploited in the avoidance of undesired traits linked to climate change (Carbonell‐Bejerano et al., 2015).

Vitamins in grape must: let’s lift a corner of the veil

Although vitamins stand as major actors to yeasts prime metabolic pathways, their significance in oenology and winemaking remains rather obscure nowadays, having been mostly unexplored for several decades.