Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Influence of irrigation on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Abstract

[English version below]

Cette étude a pour but d’évaluer la modification de l’état hydrique (potentiel hydrique foliaire), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales, comme conséquence de l’application d’une irrigation modérée. Pour développer l’essai on a appliqué les suivantes doses d’arrosage: 0% et 20% de ETo. L’essai experimental a été situé à Valladolid (Castilla et León, Espagne). Les ceps ont été plantés en 1993, sur porte-greffe 110R, et ont été conduites en espalier, menés en cordon Royat bilateral et taillés en coursons, avec une densité de plantation de 2645 ceps/ha (2.7 m x 1.4 m).
L’aplication d’irrigation a permis d’apprécier une augmentation du potentiel hydrique foliaire et un accroissement important de la production de matière sèche et du rendement. Le stress hydrique dérivé de l’absence d’irrigation a provoqué un accroissement de la concentration de sucres, le pH et l’acidité totale, ainsi que la concentration polyphénolique du moût par la diminution du poids de baie. Dans les conditions de l’essai (zone de la Vallée du Douro) et avec la densité de plantation utilisée, l’application de doses modérées d’irrigation cause une amélioration de l’état hydrique de la vigne et une importante augmentation de la productivité du vignoble et du rendement, mais il peut occasionner une réduction de la qualité du raisin de Tempranillo.

This study analyzes the influence of moderate irrigation on plant water status (leaf water potential), productivity (dry matter and yield) and fruit quality (berry size, ºBrix, pH, titratable acidity, phenolic compounds) of Tempranillo grapevine in the Duero river Valley, at the A.O. Cigales. Irrigation treatments applied were: 0% and 20% ETo. The experimental trial was located in Valladolid (Castilla y León, Spain). The 12-year-old vines grafted onto 110 Richter rootstock were vertical trellis trained, through bilateral cordon, and spur pruned. Vine spacing was 2645 vines per ha (2.7 m x 1.4 m).
The application of irrigation has increased the leaf water potential level and provoked an important increase of dry matter production as well as yield. The water stress caused by the lack of watering has increased sugar concentration, pH, titratable acidity and phenolic compounds concentration, through the berry size reduction. The application of moderate doses of irrigation causes an improvement of water status and an important increase of productivity and yield conditioned by the climatic characteristics of the zone (Valley of the Duero river) and the soil of the experimental trial. Nevertheless, a reduction of the must quality of Tempranillo grapevine can take place due to the irrigation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Yuste, J.L. Asenjo, H. Martín, R. Yuste

Instituto Tecnológico Agrario de Castilla y León. Valladolid. Spain

Contact the author

Keywords

Acidity, berry size, dry matter, leaf water potential, polyphenols, soluble solids

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Agroclimatic characterisation of the Portugese wine denominations of origin using a compound index

Aims: This study aims to: (1) characterize the agroclimatic conditions of the Portuguese Denominations of Origin, using a compound index that combines thermal and soil water balance conditions and a high-resolution climatic dataset (~1 km spatial resolution); (2) categorize the main grapevine varieties as a function of this compound index.

Yeast Derivatives: A Promising Alternative In Wine Oxidation Prevention?

Oxidation processes constitute a main problem in winemaking. Oxidation result in color browning and varietal aroma loss, which are key attributes of wine organoleptic quality [1]. Despite the mechanisms involved in wine oxidation have been extensively reviewed [2], the protection of wine against oxidative spoilage remains one of the main goals of winemaking.
SO2 is one of the most efficient wine antioxidants used to prevent oxidation and microbial spoilage. However, intolerances caused by SO2 have led to the reduction of its concentration in wines.

Gamma-ray spectrometry In Burgundy vineyard for high resolution soil mapping

Aim: A soil mapping methodology based on gamma-ray spectrometry and soil sampling has been applied for the first time in Burgundy. The purpose of this innovative high-resolution mapping is to delimit soil areas, to define elementary units of soil for terroir characterization and vineyard management. The added value of this integrated approach is a continuous geophysical mapping of the soil with an investigation depth of 60cm.

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Techniques to study graft union formation in grapevine

Grapevines are grown grafted in most viticultural regions. Grapevine rootstocks are either hybrids or pure species of different American Vitis spp. (particularly V. berlandieri, V. rupestris and V. riparia), which were primarily used to provide root resistance to the insect pest Phylloxera. In addition to Phylloxera resistance, grapevine rootstocks were also selected in relation their resistance to various abiotic stress conditions. Future rootstocks should have the potential to adapt viticulture to climate change without changing the characteristics of the harvested product. However, high grafting success rates are an essential prerequisite to be able to use them with all the varieties. The objective of this work is to develop quantitative techniques to characterize graft union formation in grapevine.