Terroir 2006 banner
IVES 9 IVES Conference Series 9 The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

The effect of rootstock on water relations and gas exchange of Vitis vinifera cv. Xinomavro

Abstract

The effect of two rootstocks of different drought tolerance (1103 Paulsen and 3309 Couderc) on sap flow, water relations and gas exchange of cv. Xinomavro (Vitis vinifera L.) was investigated during the 2005 season in Naoussa, Greece. Soil was maintained at field capacity for both rootstock treatments until mid July when a restricted water regime was applied by irrigation cutoff. Sap flow diurnals for the Xinomavro-1103P combination showed a rapid decrease of flow after midday, under water stress conditions. On the contrary, vines grafted on 3309C maintained the transpiratory flux during the day, despite conditions of limited water availability. Vines grafted onto 1103P had significantly higher (less negative) values of late afternoon (16h00) stem water potential, compared to those grafted on 3309C. Simultaneous assimilation and stomatal conductance values were significantly lower for the Xinomavro-1103P combination compared to Xinomavro on 3309C. These results support the possibility of a more sensitive drought avoidance mechanism for vines grafted on 1103P based on stomatal control. On the contrary, 3309C allowed this cultivar to maintain higher stomatal conductance and water uptake under water deficit. Grapes from the Xinomavro-3309C combination exhibited significantly superior sugar content at harvest, expressed on a per g of fresh berry weight basis. Since growth and yield parameters were similar among treatments, this finding is likely to be related to the higher afternoon photosynthetic rate of 3309C-grafted vines, prior to harvest.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

Stefanos KOUNDOURAS (1), Eleftheria ZIOZIOU (1), Nikolaos NIKOLAOU (1) and Konstantinos ANGELOPOULOS (2)

(1) Laboratory of Viticulture, School of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
(2) Laboratory of Plant Physiology, Department of Biology, University of Patras, 26500, Patras, Greece

Contact the author

Keywords

rootstock, drought tolerance, sap flow, stem water potential, gas exchange

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Combined high-resolution chromatography techniques and sensory analysis as a support decision system tool for the oenologist

One of the main challenges in the wine industry is to understand how different wine processing techniques and practices can influence the overall quality of the final product.

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Chemical and sensory evaluation of Bordeaux wines (Cabernet sauvignon and Merlot) and correlation with wine age

This study was carried out on 24 vintages of Cabernet sauvignon and on 7 vintages of Merlot produced by two different Bordeaux growing areas. Proanthocyanidin monomers and oligomers, and several parameters of the proanthocyanidin fraction were analytically assessed.

Functional characterisation of genetic elements regulating bunch morphology in grapevine

Vitis vinifera L., is considered one of the world’s most important cultivated fruit crops. In agriculture, bunch morphology is a grapevine-specific trait, which directly impacts fruit quality and health.
Bunch size, shape, and compactness are major aspects of bunch morphology, with the degree of compactness emerging as an important trait for grapevine genetic enhancement and vineyard management. The importance of this trait stems from its impact on disease susceptibility, berry ripening, and other grape quality properties. However, current knowledge of the genes controlling it remains limited.

Development of a standardized method for metabolite analysis by NMR to assess wine authenticity

The wine sector generates a considerable amount of wealth but is facing a growing problem of fraud. Wine counterfeiting is one of the oldest and most common cases of food fraud worldwide. Therefore, the authenticity and traceability of wine are major concerns for both the industry and consumers. To address these issues, robust and reliable analysis and control methods are necessary. Several methods have been developed, ranging from simple organoleptic tests to more advanced methodologies such as isotopic techniques or residual radioactivity measurements.