Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Abstract

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts from grape were quantified using GC-MS analysis, and the profiles of both varieties were compared for different geographical sites of the French Rhone valley vineyard, and for three consecutive years. Moreover, the wines elaborated with different grapes were added with their own glycosides, then submitted to aging treatments prior to sensory descriptive analysis. The results showed that addition with glycosidic precursors enhanced the initial aromatic notes of the wines, depending on grape variety and vine site. The aglycone profiles of the grapes of the two varieties showed significant differences for half of the quantified compounds, and were influenced by vintage and vine site. It therefore appeared that glycosidic precursors could actually contribute to the aging aromas of Grenache Noir and Syrah wines, and to the complex interactions between variety and terroir.
Le Grenache Noir et la Syrah sont les cépages les plus répandus dans le vignoble français de la vallée du Rhône, et produisent des vins bien différenciés d’un point de vue aromatique. L’objectif de cette étude est de cerner la contribution des précurseurs glycosidiques à ces spécificités aromatiques, à travers leurs profils analytiques et l’influence sensorielle des composés odorants qu’ils génèrent au cours du vieillissement des vins. Les aglycones libérées par hydrolyse enzymatique des extraits glycosidiques des baies ont été quantifiées par analyse en GC-MS, et les profils des deux variétés ont été comparés pour différents terroirs de la vallée du Rhône, et trois millésimes consécutifs. Par ailleurs, les vins élaborés à partir de ces raisins ont été enrichis en leurs propres précurseurs, puis soumis à des traitements de vieillissement avant une analyse sensorielle descriptive. Les résultats montrent que l’enrichissement en glycosides intensifie les notes aromatiques initiales des vins, avec un effet dépendant du cépage et du site d’implantation de la vigne. Les profils d’aglycones des baies des deux variétés présentent des différences significatives portant sur la moitié des composés quantifiés, et apparaissent influencés par le millésime et le site d’implantation. Cette étude montre ainsi que les précurseurs glycosidiques pourraient participer à l’arôme de vieillissement des vins de Grenache Noir et Syrah, et aux interactions complexes entre cépage et terroir.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

M. Ségurel (1,2), R. Baumes (1), C. Riou (2), A. Razungles (1)

(1) UMR Sciences pour l’œnologie, INRA, 2 place Viala, 34060 MONTPELLIER Cedex 1
(2) INTER RHONE, Interprofession des vins AOC Côtes-du-Rhône et vallée du Rhône, 2260 route du Grès, 84100 ORANGE

Contact the author

Keywords

Wine, grape, Grenache noir, Syrah, aroma, glycoconjugate, sensory analysis, volatile

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Deep learning based models for grapevine phenology

the phenological evolution is a crucial aspect of grapevine growth and development. Accurate detection of phenological stages can improve vineyard management, leading to better crop yield and quality traits. However, traditional methods of phenological tracking such as on-site observations are time-consuming and labour-intensive. This work proposes a scalable data-driven method to automatically detect key phenological stages of grapevines using satellite data. Our approach applies to vast areas because it solely relies on open and satellite data having global coverage without requiring any in-field data from weather stations or other sensors making the approach extensible to other areas.

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Relationships between vine isohydricity and changes of fruit growth and metabolism during water deficit

The frequency of water deficits is increasing in many grape-growing regions due to climate change.

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.