Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Vineyard soil mapping to optimise wine quality: from ‘terroir’ characterisation to vineyard management

Abstract

In this study, a soil mapping methodology at subplot level (scale 1:5000) for vineyard soils was developed. The aim of this mapping method was to establish mapping units, which could be used as basic units for ‘terroir’ characterisation and vineyard management (precision viticulture). The developed methodology applied most of the criteria of the Soil Inventory of Catalonia and the Soil Survey Manual of the Department of Agriculture of United States, at very-detailed scale. The suitability of soil maps as a tool for definition of ‘terroir’ units and management units are discussed, according to our experiences. The method followed allowed good soil type discrimination at vineyard subplot level, differentiating zones with distinct soil properties important to vineyard development. However, the variability within the soil mapping unit could not be ascertained by this method. Significant differences in grape quality were found between distinct soil mapping units. Moreover, the application of variable rates of fertilizer at vine subplot level was possible using thematic maps calculated from soil maps, by means of Geographic Information Systems. 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type: Article

Authors

Josep Miquel UBALDE (1), Xavier SORT (1), Rosa Maria POCH (2) and Miquel PORTA (1)

(1) Dept. of Viticulture, Miguel Torres Winery, Miquel Torres i Carbó 6, 08720 Vilafranca del Penedès, Spain
(2) Dept. of Environment and Soil Science, University of Lleida, Rovira Roure 191, 25198 Lleida, Spain 

Contact the author

Keywords

soil mapping, viticultural zoning, terroir unit, management unit, precision viticulture

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Evaluation of Saccharomyces cerevisiae strains from honey by-products by their performance as starters in the wine industry

AIM: Recent studies on yeast ecology of non-oenological niches have highlighted the ability of some Saccharomyces cerevisiae yeasts to ferment grape must [1]

Raman spectroscopy as a rapid method to assess grape polyphenolic maturation and wine malolactic fermentation on site

Wineries can increase their economic and environmental sustainability by optimizing the winemaking procedures, from harvest to wine maturation and conservation. Based on analytical data of the chemical composition and wine sensory evaluation, the enologist makes his own decision regarding the enological interventions at the harvest date selection, winemaking and post-winemaking.

Phenolic composition of Cabernet Sauvignon wines from Argentina, Portugal and Spain

Grape and wine phenolic compounds have been shown to be highly related to both wine quality (color, flavor, and taste) and health-promoting properties (antioxidant and cardioprotective, among others). The aim of this work was to evaluate and compare the phenolic contents of Cabernet Sauvignon wines from different geographical areas and climatic conditions, namely from Argentina, Portugal and Spain vintage 2022. In addition, the phenolic profiles of the Portuguese wines from three vintages (2020, 2021, 2022) was compared.

Effect of soil particle size on vine water status, leaf ABA content and berry quality in Nebbiolo grapes

The root and shoot abscisic acid (ABA) accumulation in response to water deficit and its relation with stomatal conductance is longtime known in grapevine. ABA-dependent and ABA-independent signalling response to osmotic stress coexist in sessile plants. In grapevine, the signaling role of ABA in response to water stress conditions and its influence on berry quality is critical to manage grapevine acclimation to climate change.

Viticultural heritage in mountain territories of Catalonia: prospecting in the region of Osona, northern Spain

The recovery of ancestral or minority vine varieties has been gaining great interest in recent years, among other reasons because it is likely that some of these varieties, due to the fact that they are found in relict areas, have a greater potential for adaptation to external factors (biotic or abiotic) and can minimize the effects that climate change is causing in viticulture. Varieties that can be grown at altitude are currently being sought to combat rising temperatures and prolonged extreme drought conditions. In Catalonia, the Pyrenean expansion of vineyard cultivation is documented from the 10th century and has been related to the “small climatic optimum” (9th-12th centuries) and also to seigniorial power.[1] But different adverse climatic periods and the arrival of Phylloxera by the late 19th century made many of these crops disappear.[2]