Terroir 2004 banner
IVES 9 IVES Conference Series 9 Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Abstract

[English version below]

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des formations pédologiques montre des signes d’humidité en profondeur, tandis que l’autre est relativement sèche. Malgré leur proximité géographique (9 km), le méso-climat diffère entre les deux localités, principalement en raison de l’altitude, A étant situé à 413 m et B à 148 m d’altitude. La température maximale de février est 1.9ºC plus basse en A qu’en B, les températures nocturnes sont aussi les plus basses en A. Les raisins de la localité la plus fraîche (A) sont généralement récoltés deux semaines plus tard que ceux de la localité la plus chaude (B). A la localité la plus fraîche, la maturation est aussi affectée par la formation pédologique : les raisins issus du sol le plus sec ont été vendangés approximativement une semaine avant ceux ceux issus du sol plus humide. Cependant la maturation n’a pas été affectée par le sol à la localité la plus chaude. A la localité la plus fraîche, les vins issus du sol plus humide révèlent généralement un caractère végétatif frais prédominant (herbacé, poivre vert, eucalyptus, menthe) et ceux issus du sol plus sec des caractéristiques de légumes cuits (haricots verts, asperges, olive, artichaut) et de fruits. Le style de vin n’a pas été affecté par la formation pédologique à la localité la plus chaude oú les caractères de fruits tropicaux dominent. Les résultats suggèrent que le style du vin de Sauvignon blanc de Stellenbosch n’est pas seulement affecté par le climat, mais aussi par le sol.
A nine-year study was carried out in two non-irrigated, commercial Sauvignon blanc vineyards, grown at different localities (A and B) in the district of Stellenbosch. Two experimental plots, representing different soil forms, were identified within each vineyard. At both localities one of the soil forms showed signs of wetness with depth, while the other one was relatively dry. Despite their geographic proximity (9 km), meso-climate differed between the two localities, largely on account of A being situated at higher altitude (413 m) than B (148 m). Maximum temperature for February was 1.9ºC lower for A than for B, while night temperature was also lowest at A. Grapes at the cooler locality (A) were generally harvested two weeks later than those at the warmer one (B). At the cooler locality ripening was also affected by soil form, with grapevines on the drier soil being harvested approximately one week earlier than those on the wetter soil. Ripening was not affected by soil form at the warmer locality. At the cooler locality, wine from the wetter soil generally exhibited a prominent fresh vegetative character (grass, green pepper, eucalyptus, mint), in comparison to cooked vegetative (green beans, asparagus, olive, artichoke) and fruity characteristics for the one from the drier soil. Wine style was not affected by soil form at the warmer locality, with tropical fruit character being dominant. Results suggested that the style of Sauvignon blanc wines from Stellenbosch is not only affected by climate, but also by soil form.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. Conradie (1)* and M.P. Olivier (1)**

(1) ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, Republic of South Africa

* Present address: Department of Soil Science, University of Stellenbosch, 7600 Stellenbosch, Republic of South Africa
** Presenting author

Contact the author

Keywords

Soil, climate, wine style, Sauvignon blanc, Stellenbosch, South Africa

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.

From vineyard to a glass of wine: the effect of abscisic acid application on mouhtaro, a rare autochthonous variety of greece

In a context of a sustainable viticulture, a new uprising strategy to improve grape and wine composition (or quality) is the exogenous application of plant activators(Gil-Muñoz et al., 2017)

Timing of leaf removal effects on vitis vinifera L. Cv. Grenache differed on two contrasting seasons

Warming trends over the winegrowing regions lead to an advance of grapevine phenology, diminution of yield and increased sugar content and must pH with a lower polyphenol content, especially anthocyanins. Canopy management practices are applied to control the source sink balance and improve the cluster microclimate to enhance berry composition. We hyphothesized that an early leaf removal might promote a delayed ripening through severe defoliation after fruitset; whereas, a late leaf removal at mid-ripening would reduce sugar accumulation.

Leaf vine content in nutrients and trace elements in La Mancha (Spain) soils: influence of the rootstock

The use of rootstock of American origin has been the classic method of fighting against Phylloxera for more than 100 years. For this reason, it is interesting to establish if different rootstock modifies nutrient composition as well as trace elements content that could be important for determining the traceability of the vine products. A survey of four classic rootstocks (110-Richter, SO4, FERCAL and 1103-Paulsen) and four new ones (M1, M2, M3 and M4) provided by Agromillora Iberia. S.L.U., all of them grafted with the Tempranillo variety, has been carried out during 2019. The eight rootstocks were planted in pots of 500 cc, on three soils with very different characteristics from Castilla-La Mancha (Spain). In the month of July, the leaves were collected and dried in a forced air oven for seven days at 40ºC. Then, the samples were prepared for the analysis determination, carried out by X-Ray fluorescence spectrometry. The results obtained showed that in the case of content in mineral elements in leaf, separated by soil type, we can report the importance of few elements such as Si, Fe, Pb and, especially, Sr. The rootstock does not influence the composition of the vine leaf for the studied elements that are the most important in determining the geochemical footprint of the soil. The influence of the soil can be discriminated according to some elements such as Fe, Pb, Si and, especially, Sr.

Crown procyanidin quantification in red wines, rosé wines and Port wines

Condensed grape tannins play a major role in the organoleptic properties and quality of red wine. Recently, a new sub-family of macrocyclic condensed tannins has been identified in red wine and named “crown tannins”. Indeed, the first compound of the family identified and characterised by NMR was the crown procyanidin tetramer which is composed of a macrocyclic structure composed of four (-)-epicatechins link together by B-type interflavanoid linkage in the following an alternative sequences of C4-C8 and C4-C6 linkage. The 3D structure of this unusual crown procyanidin family reveals a central cavity in the molecule [1].