Terroir 2012 banner
IVES 9 IVES Conference Series 9 Towards a unified terroir zoning methodology in viticulture

Towards a unified terroir zoning methodology in viticulture


In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue. This paper addresses soil and climate related aspects of terroir zoning. The first step of the zoning process is a clear identification of the objectives that are being pursued. Soil zoning and climate zoning methods are presented separately, although both approaches are preferably carried out simultaneously, in order to take into account soil-climate interactions in the terroir effect. Definition of a scale adapted to the objectives is critical, particularly so in soil zoning. For soil zoning, the relevance of geology, geomorphology and pedology (soil science) is discussed. The use of new technologies (e.g. GIS or remote sensing) enables the production of more detailed maps at reduced costs. In climate zoning, climate data and agroclimatic indices must be chosen according to the zoning objectives. High quality climatic data must be selected and validated. Following, homogeneous climatic zones are indentified. Viticultural zoning has to be validated, preferably so by eco-physiological studies. This paper is based on the unified terroir zoning methodology that is currently in preparation by the experts of the International Organisation of Vine and Wine (OIV).


Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article


Cornelis VAN LEEUWEN (1,2), Benjamin BOIS (3), Jean-Philippe ROBY (1,2), Laure de RESSEGUIER (1,2)

(1) Univ. Bordeaux, ISVV, Ecophysiology and functional genomics of grapevines, UMR 1287, F-33140 Villenave d’Ornon, France
(2) Bordeaux Sciences Agro, ISVV, Ecophysiology and functional genomics, UMR 1287, F-33140 Villenave d’Ornon, France
(3) Centre de Recherches de Climatologie / Biogéosciences, UMR 6282, CNRS – Université de Bourgogne, 6 boulevard Gabriel, 21000 Dijon, France

Contact the author


viticulture, terroir, zoning, soil, climate


IVES Conference Series | Terroir 2012


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.