Terroir 2004 banner
IVES 9 IVES Conference Series 9 Black foot disease in South African vineyards and grapevine nurseries

Black foot disease in South African vineyards and grapevine nurseries

Abstract

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests, abiotic factors, as well as nutritional deficiencies and toxicities. Cylindrocarpon spp., which cause black foot disease of grapevine were found to be associated with the decline of young vines in South Africa. Results obtained from the diagnostic service at ARC Infruitec-Nietvoorbij (Disease Management Division) showed that Cylindrocarpon spp. were isolated from 52%, 22% and 29% of diseased vines during 1999-2002, 2002-2003 and 2003-2004, respectively. However, it was unclear how and where these infections occurred. Very little information is available regarding the aetiology and epidemiology of the fungi believed to be involved in black foot disease. Diseased grapevines delivered for diagnosis were typically less than 5 years old and in some instances symptoms even appeared during the first year of planting. Diseased plants display an array of decline symptoms. In vineyards, the first visible symptoms are usually delayed or absence of budding. Subsequently shoots develop abnormally (shortened internodes and small discoloured leaves) which may dry and even die during summer. When symptomatic plants are removed from the soil, inspection of the roots may reveal the presence of grey to black necrosis which ultimately leads to the underdevelopment of the entire root system. Further root abnormalities include the development of secondary root crowns with roots growing parallel to the soil surface. Internal symptoms include brown-black discoloration of xylem vessels originating from the base of the rootstock, brown-black discoloration in roots, and necrosis from the bark to the centre of roots and rootstocks (Fourie & Halleen, 2001).
The purpose of this communication is to provide a short overview of the results obtained from research conducted during the past 5 years. The primary aims of research have been (1) to conduct nursery surveys in order to determine which fungi are involved in the decline phenomenon, with special reference to the involvement of Cylindrocarpon spp., (2) to identify the organisms believed to be the causal organisms of black foot disease, and (3) the development of control and/or management strategies to prevent or eradicate Cylindrocarpon infections.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Halleen (1), P.H. Fourie (2) & P.W. Crous (3)

(1) ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch, 7599, South Africa
(2) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(3) Centraalbureau voor Schimmelcultures, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

DISCRIMINATION OF BOTRYTIS CINEREA INFECTED GRAPES USING UNTARGE-TED METABOLOMIC ANALYSIS WITH DIRECT ELECTROSPRAY IONISATION MASS SPECTROMETRY

Infection of grapes (Vitis vinifera) by Botrytis cinerea (grey mould) is a frequent occurrence in vineyards and during prolonged wet and humid conditions can lead to significant detrimental impact on yield and overall quality. Growth of B. cinerea causes oxidisation of phenolic compounds resulting in a loss of colour and formation of a suite of off-flavours and odours in wine made from excessively infected fruit. Apart from wine grapes, developing post-harvest B. cinerea infection in high-value horticultural products during storage, shipment and marketing may cause significant loss in fresh fruits, vegetables and other crops. A rapid and sensitive assessment method to detect, screen and quantify fungal infection would greatly assist viticultural growers and winemakers in determining fruit quality.

Yield formation and grape composition: more than meets the eye 

Fruit quality in grapes is not well defined but is often depicted as correlating inversely with crop yield. Both fruit yield and composition, however, are made from distinct components that interact in complex ways. Reproductive growth of grapevines extends over two growing seasons. Inflorescences initiated in buds during the previous year differentiate flowers and set and develop berries during the harvest year.

Mitigation of retronasal smoke flavor carryover in the sensory analysis of smoke affected wines

With the steady rise in wildfire occurrence in wine regions around the world, there are quality issues beginning to face the wine industry. These fires produce clouds of smoke which have the ability to carry organic molecules across vast distances that can be absorbed by grapes. When these compounds make their way into the final wine, unpleasant smokey and burnt flavors are present, along with a lasting ashy finish. Along with the volatile compounds carried by smoke, once incorporated into the fruit these compounds become bound to sugars, forming glycosidic compounds.

The selection of Vitis vinifera L. cultivars based on berry texture, iPBS genetic markers, and noble rot susceptibility analysis

The selection of a suitable grape variety (Vitis vinifera L.) for specific viticulture and oenology objectives is a considerable challenge in the context of climate change.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.