Terroir 2004 banner
IVES 9 IVES Conference Series 9 Black foot disease in South African vineyards and grapevine nurseries

Black foot disease in South African vineyards and grapevine nurseries

Abstract

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests, abiotic factors, as well as nutritional deficiencies and toxicities. Cylindrocarpon spp., which cause black foot disease of grapevine were found to be associated with the decline of young vines in South Africa. Results obtained from the diagnostic service at ARC Infruitec-Nietvoorbij (Disease Management Division) showed that Cylindrocarpon spp. were isolated from 52%, 22% and 29% of diseased vines during 1999-2002, 2002-2003 and 2003-2004, respectively. However, it was unclear how and where these infections occurred. Very little information is available regarding the aetiology and epidemiology of the fungi believed to be involved in black foot disease. Diseased grapevines delivered for diagnosis were typically less than 5 years old and in some instances symptoms even appeared during the first year of planting. Diseased plants display an array of decline symptoms. In vineyards, the first visible symptoms are usually delayed or absence of budding. Subsequently shoots develop abnormally (shortened internodes and small discoloured leaves) which may dry and even die during summer. When symptomatic plants are removed from the soil, inspection of the roots may reveal the presence of grey to black necrosis which ultimately leads to the underdevelopment of the entire root system. Further root abnormalities include the development of secondary root crowns with roots growing parallel to the soil surface. Internal symptoms include brown-black discoloration of xylem vessels originating from the base of the rootstock, brown-black discoloration in roots, and necrosis from the bark to the centre of roots and rootstocks (Fourie & Halleen, 2001).
The purpose of this communication is to provide a short overview of the results obtained from research conducted during the past 5 years. The primary aims of research have been (1) to conduct nursery surveys in order to determine which fungi are involved in the decline phenomenon, with special reference to the involvement of Cylindrocarpon spp., (2) to identify the organisms believed to be the causal organisms of black foot disease, and (3) the development of control and/or management strategies to prevent or eradicate Cylindrocarpon infections.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Halleen (1), P.H. Fourie (2) & P.W. Crous (3)

(1) ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch, 7599, South Africa
(2) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(3) Centraalbureau voor Schimmelcultures, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Chitosan from sustainable source: antimicrobial activity against undesirable yeasts for production of low-sulphite wine

The addition of sulphur dioxide (SO2) is the method traditionally used for wine stabilisation, due to its broad spectrum of action against unwanted microorganisms and its ability to prevent oxidative phenomena.

Effect of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on rose quality wine

Alcoholic fermentation using no Saccharomyces wine is an effective means of modulating wine aroma. This study investigated the impact of coinoculating Torulaspora delbruecki with two Saccharomyces cerevisiae commercial yeast (QA23, Lallemand; Red Fruit, Sepsa-Enartis) on enological quality parameters, volatile composition and sensory analysis. The following assays were performed on Tempranillo variety: Saccharomyces QA23 (CTQA), Saccharomyces Red Fruit (CTRF), coinoculated T. delbrueckii + S.cerevisiae QA23 (CIQA) and coinoculated T. delbrueckii + S.cerevisiae (CIRF).

Definition of functional indicators of the vine to characterize wine terroirs

La caractérisation des terroirs viticoles est traditionnellement basée sur des descripteurs de la géologie et de la pédologie des différents milieux rencontrés, couplées à des données climatiques

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).