Terroir 2004 banner
IVES 9 IVES Conference Series 9 Black foot disease in South African vineyards and grapevine nurseries

Black foot disease in South African vineyards and grapevine nurseries

Abstract

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests, abiotic factors, as well as nutritional deficiencies and toxicities. Cylindrocarpon spp., which cause black foot disease of grapevine were found to be associated with the decline of young vines in South Africa. Results obtained from the diagnostic service at ARC Infruitec-Nietvoorbij (Disease Management Division) showed that Cylindrocarpon spp. were isolated from 52%, 22% and 29% of diseased vines during 1999-2002, 2002-2003 and 2003-2004, respectively. However, it was unclear how and where these infections occurred. Very little information is available regarding the aetiology and epidemiology of the fungi believed to be involved in black foot disease. Diseased grapevines delivered for diagnosis were typically less than 5 years old and in some instances symptoms even appeared during the first year of planting. Diseased plants display an array of decline symptoms. In vineyards, the first visible symptoms are usually delayed or absence of budding. Subsequently shoots develop abnormally (shortened internodes and small discoloured leaves) which may dry and even die during summer. When symptomatic plants are removed from the soil, inspection of the roots may reveal the presence of grey to black necrosis which ultimately leads to the underdevelopment of the entire root system. Further root abnormalities include the development of secondary root crowns with roots growing parallel to the soil surface. Internal symptoms include brown-black discoloration of xylem vessels originating from the base of the rootstock, brown-black discoloration in roots, and necrosis from the bark to the centre of roots and rootstocks (Fourie & Halleen, 2001).
The purpose of this communication is to provide a short overview of the results obtained from research conducted during the past 5 years. The primary aims of research have been (1) to conduct nursery surveys in order to determine which fungi are involved in the decline phenomenon, with special reference to the involvement of Cylindrocarpon spp., (2) to identify the organisms believed to be the causal organisms of black foot disease, and (3) the development of control and/or management strategies to prevent or eradicate Cylindrocarpon infections.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Halleen (1), P.H. Fourie (2) & P.W. Crous (3)

(1) ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch, 7599, South Africa
(2) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(3) Centraalbureau voor Schimmelcultures, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Factors influencing the production of the antioxidant hydroxytyrosol during alcoholic fermentation: Yeast Assimilable Nitrogen and Sugar content.

Hydroxytyrosol (HT) is well known for its potent antioxidant activity and anticarcinogenic, antimicrobial, cardioprotective and neuroprotective properties. One possible explanation to its origin in wines is the synthesis from tyrosol, which in turn is produced from the Ehrlich pathway by yeasts. This work aims to explore the factors that could increase the final content as the initial concentration of yeast assimilable nitrogen (YAN) and sugar. Two different concentrations of YAN were proved between 210mg/L and 300 mg/L. Additionally, two different concentrations of sugar were used: 100g/L and 240 g/L. Alcoholic fermentations in synthetic must were performed with the strain QA23.

Under-vine management effects on grapevine production, soil properties and plant communities in South Australia

Under-vine (UV) management has traditionally consisted of synthetic herbicide use to limit competition between weeds and grapevines. With growing global interest towards non-synthetic chemical use, this study aimed to capture the effects of alternative UV management at two commercial Shiraz vineyards in South Australia, where the sole management variables were UV management since 2016. In adjacent treatment blocks, cultivation (CU) was compared to spontaneous vegetation (SV) in McLaren Vale (MV), and herbicide was compared to SV in Eden Valley (EV). Soil water infiltration rates were slower and grapevine stem water potential was lower in CU compared to SV in MV, with the latter having a plant community dominated by soursob (Oxalis pes-caprae) during winter; while in EV, there was little separation between the treatments. Yields were affected at both sites, with SV being higher in MV and HE being higher in EV. In MV, the only effect on grape must was a lower 13C:12C isotope ratio in CU, indicating greater grapevine water stress. In the grape must at EV, SV had higher total soluble solids, total phenolics, anthocyanins, and yeast available nitrogen; and lower pH and titratable acidity. Pruning weights were not affected by the treatments in MV, while they were higher in HE at EV. Assessments revealed that the differing soil types at the two sites were likely the main determinants of the opposing production outcomes associated with UV management. In the silty loam soil of MV, the higher yields in SV were likely due to more plant-available water, as a potential result of the continuous soil bio-pores formed by winter UV vegetation. Conversely, in the loamy sand soils of EV with a lower cation exchange capacity, the lower yields and pruning weights in SV suggest the UV vegetation competed significantly with the grapevines for available water and nutrients.

The representation of the vines: from symbol to spectacle

Landscapes such as its representation express values, beliefs and intentions of the individuals and the communities that produce them.

Exploring aromatic profiles and environmental influences on berry chemistry of V. vinifera Riesling and Vitis sp. L’Acadie blanc in Quebec and Nova Scotia, Canada

Wine quality depends on grape biochemical constituents, including sugars, organic acids, amino acids, and bound and free aroma compounds, which are influenced by vineyard location and environmental factors such as temperature and precipitation [1].

EVALUATION OF A SEAWEED EXTRACT OF RUGULOPTERYX OKAMURAE AGAINST ERYSIPHE NECATOR IN GRAPEVINE

Powdery mildew, caused by Erysiphe necator, is a widespread disease that causes high economical losses in viticulture. The main strategy to control the disease is the recurrent application of sulphur based phytochemical compounds. However, in order to reduce their accumulation in the environment and promote the sustainability of the sector, the European Commission has applied restrictions to the number of pesticide treatments and the maximum quantity of fungicides to be applied in viticulture. Seaweeds, in particular macroalgae, are marine resources rich in sulphated polysaccharides with bio-protective potential for the plant, representing an environmentally-friendly alternative approach for sustainable wine production.