Terroir 2004 banner
IVES 9 IVES Conference Series 9 Black foot disease in South African vineyards and grapevine nurseries

Black foot disease in South African vineyards and grapevine nurseries

Abstract

Over the last few years a drastic reduction has been noted in the survival rate of vine cuttings in nurseries, as well as in young vineyards in the Western Cape Province of South Africa. The low average take percentages of young vines can be attributed to several factors, including fungal, bacterial and viral diseases, insect and nematode pests, abiotic factors, as well as nutritional deficiencies and toxicities. Cylindrocarpon spp., which cause black foot disease of grapevine were found to be associated with the decline of young vines in South Africa. Results obtained from the diagnostic service at ARC Infruitec-Nietvoorbij (Disease Management Division) showed that Cylindrocarpon spp. were isolated from 52%, 22% and 29% of diseased vines during 1999-2002, 2002-2003 and 2003-2004, respectively. However, it was unclear how and where these infections occurred. Very little information is available regarding the aetiology and epidemiology of the fungi believed to be involved in black foot disease. Diseased grapevines delivered for diagnosis were typically less than 5 years old and in some instances symptoms even appeared during the first year of planting. Diseased plants display an array of decline symptoms. In vineyards, the first visible symptoms are usually delayed or absence of budding. Subsequently shoots develop abnormally (shortened internodes and small discoloured leaves) which may dry and even die during summer. When symptomatic plants are removed from the soil, inspection of the roots may reveal the presence of grey to black necrosis which ultimately leads to the underdevelopment of the entire root system. Further root abnormalities include the development of secondary root crowns with roots growing parallel to the soil surface. Internal symptoms include brown-black discoloration of xylem vessels originating from the base of the rootstock, brown-black discoloration in roots, and necrosis from the bark to the centre of roots and rootstocks (Fourie & Halleen, 2001).
The purpose of this communication is to provide a short overview of the results obtained from research conducted during the past 5 years. The primary aims of research have been (1) to conduct nursery surveys in order to determine which fungi are involved in the decline phenomenon, with special reference to the involvement of Cylindrocarpon spp., (2) to identify the organisms believed to be the causal organisms of black foot disease, and (3) the development of control and/or management strategies to prevent or eradicate Cylindrocarpon infections.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

F. Halleen (1), P.H. Fourie (2) & P.W. Crous (3)

(1) ARC Infruitec-Nietvoorbij (The Fruit, Vine and Wine Institute of the Agricultural Research Council), Private Bag X5026, Stellenbosch, 7599, South Africa
(2) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
(3) Centraalbureau voor Schimmelcultures, P.O. Box 85167, NL-3508 AD Utrecht, The Netherlands

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Piloting grape ripening in a global warming scenario: feasible techniques are available

Under the pressure of global warming, several wine grape growing regions around the world are increasingly suffering from advanced and compressed phenology; endangering wine character while also creating serious logistic problems. From a physiological standpoint, the issue of delaying ripening is not simple as, in several instances, only a few processes must be delayed (i.e. sugar accumulation into the berries) while other events such as pigmentation and accumulation of other important phenolic compounds should proceed at a normal rate. Thus, the issue of decoupling technological maturity from phenolic maturity is another important consideration. Over the last decades, several research groups have endeavored to establish alternate cultural practices aimed at addressing this decoupling. In some cases, special applications of quite robust and well known practices regarding physiological principles have been utilized, however some completely new techniques are also being studied. In figure 1 of the review, we offer a panorama of the available tools and in the text we elaborate on those having provided most reliable and consistent results under an array of genotypes and environmental conditions. Among these, primary focus is given to post‐veraison—apical to the cluster—leaf removal (that can also be suitably replaced by applications of anti‐transpirants); the use of kaolin against multiple summers’ stresses; and a drastic version of late winter pruning having the potential to postpone ripening into a cooler period with improved grape composition and a limited negative impact on yield and storage reserves replenishment. 

Evaluation of field inoculation of Kocuria rhizophila and Streptomyces violaceoruber as biostimulants under water availability conditions in grapevines

Agricultural productivity must promote management systems that incorporate sustainability principles, and viticulture is no exception.

‘It’s a small, yappy dog’: The British idea of terroir

Aims: Most consumer research about terroir has focused on wine, particularly with French or other European wine drinkers, rather than those in the Anglo-Saxon world. In Europe, whilst there is no agreement amongst consumers as to what terroir actually is, there is a general recognition of the word and an acceptance that it represents something important

Identification of compounds produced by reactions of flavonoids and acetaldehyde in wine

During aging, wine consumes small amounts of oxygen. This oxygen intake triggers a series of reactions that lead to flavonoid elongation, which is known to reduce bitterness and astringency while enhancing color stability.

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.