terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Abstract

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate. These changes are influenced by factors such as the ageing process itself, cask characteristics (botanical origin, volume, toasting degree, previous usage), and pre-treatments like the sherry wine-seasoning process (Sherry Cask®)[2]. In this work, the physicochemical behaviours of wine spirits and wine distillates aged in Sherry Casks® and Brandy casks have been compared.

Methods: “Wine spirit” obtained at 77%ABV and “wine distillate” at 94.6%ABV were diluted with demineralized water to 68%ABV for ageing in American oak casks, medium toast, 500L of capacity and seasoned by 18%ABV Oloroso Sherry wine for 3 years (Sherry Cask®) and “Brandy casks” were only used for ageing brandy for 3 years. It was carried out in duplicate, following a static ageing for 2 years. Oenological parameters, chromatic characteristics, and total polyphenol index (TPI) were carried out according to OIV methodology. Volatile substances were determined by GC-FID.

Results: A substantial difference was observed between the distillates aged in Sherry Cask® and Brandy cask in the parameters influenced by ageing. Aged in Sherry Cask® showed greater increase in TPI and colour. These 2 types of distillates, despite their different initial characteristics, and therefore, their levels of volatile substances, show a similar evolution in the trends of these compounds.

Acknowledgements: The authors wish to thank the University of Cadiz (Spain) and Bodegas Fundador, S.L.U. (Spain) for the industrial predoctoral contract granted to the author Daniel Butrón Benítez.

References:

1) Regulation (EU) 2019/787 European Parliament and Council of 17 April 2019. L130/1-49 (Parlamento europeo y consejo de la unión europea., 2019).

2) Mosedale, J. R., & Puech, J.-L. (1998). Wood maturation of distilled beverages. Trends in Food Science & Technology, 9(3) (1998) 95–101. https://doi.org/10.1016/S0924-2244(98)00024-7

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Butrón-Benítez, Daniel1,2*; Valcárcel-Muñoz, Manuel J.2; García-Moreno, M. Valme1; Guillén-Sánchez, Dominico A.1

1 Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO) Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
Bodegas Fundador S.L.U., C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera (Cádiz), Spain.

Contact the author*

Keywords

Brandy, wine spirit, wine distillate, ageing, Sherry Cask®

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Late winter pruning induces a maturity delay under temperature-increased conditions in cv. Merlot from Chile

Chile is considered vulnerable to climate change; and these phenomena affect several mechanisms in the grape physiology and quality. The global temperature increase affects sugar contents, organic acids, and phenolic compounds in grapes, producing an imbalance maturity. In this sense, an alternative to reduce the impact is to perform pruning after vine budburst, known as “Late Pruning” (LP).

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Wine racking in the winery and the use of inerting gases

The O2 uptake in the different winemaking processes is generally considered to be negative for the sensory characteristics of white and rosé wines. Wine racking is a critical point of O2 uptake, as the large surface area of the wine exposed during this operation and the inability to maintain an effective inert gas blanket over it.
The objective was to study O2 uptake during the racking of a model wine without using inert gases and to compare it with the purging of the destination tank with different inert gases.

Phenolic composition and chromatic characteristics of blends of cv. Tempranillo wines from vines grown with different viticultural techniques in a semi-arid area

The quality and color stability of red wines are directly related to content and distribution of phenolic compounds. However, the climate change produces the asynchrony between the dates of technological and maturity of grapes. The crop-forcing technique (CF) restores the coupling between phenolic and technological ripeness while limits vineyard yields. Blending of wines is frequently used to equilibriate composition of wines and to increase their stability, color and quality. The aim of the present work is to study the phenolic composition and color of wine blends made with FW (wines from vines subjected to CF) and CW (wines for vines under the usual cultivation practices).

Identification of loci associated with specialised metabolites in Vitis vinifera

Secondary (or specialised) metabolites such as terpenes and phenolic compounds are produced by plants for various roles which include defence against pathogens and herbivores, protection against abiotic stress, and plant signalling. Additionally, these metabolites influence grapevine quality traits such as colour, aroma, taste, and nutritional value. However, the biosynthesis of these metabolites is often complex and controlled by multiple genes which in grapevine are predominantly uncharacterised.