terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Physicochemical behaviour of wine spirit and wine distillate aged in Sherry Casks® and Brandy casks

Abstract

Brandy is a spirit drink made from “wine spirit” (<86% Alcohol by Volume – ABV; high levels of congeners and they are mainly less volatile than ethanol), it may be blended with a “wine distillate” (<94.8%ABV; low levels of congeners and these are mainly more volatile than ethanol), as long as that distillate does not exceed a maximum of 50% of the alcoholic content of the finished product[1]. Brandy must be aged for at least 6 months in oak casks with <1000L of capacity. During ageing, changes occur in colour, flavour, and aroma that improve the quality of the original distillate. These changes are influenced by factors such as the ageing process itself, cask characteristics (botanical origin, volume, toasting degree, previous usage), and pre-treatments like the sherry wine-seasoning process (Sherry Cask®)[2]. In this work, the physicochemical behaviours of wine spirits and wine distillates aged in Sherry Casks® and Brandy casks have been compared.

Methods: “Wine spirit” obtained at 77%ABV and “wine distillate” at 94.6%ABV were diluted with demineralized water to 68%ABV for ageing in American oak casks, medium toast, 500L of capacity and seasoned by 18%ABV Oloroso Sherry wine for 3 years (Sherry Cask®) and “Brandy casks” were only used for ageing brandy for 3 years. It was carried out in duplicate, following a static ageing for 2 years. Oenological parameters, chromatic characteristics, and total polyphenol index (TPI) were carried out according to OIV methodology. Volatile substances were determined by GC-FID.

Results: A substantial difference was observed between the distillates aged in Sherry Cask® and Brandy cask in the parameters influenced by ageing. Aged in Sherry Cask® showed greater increase in TPI and colour. These 2 types of distillates, despite their different initial characteristics, and therefore, their levels of volatile substances, show a similar evolution in the trends of these compounds.

Acknowledgements: The authors wish to thank the University of Cadiz (Spain) and Bodegas Fundador, S.L.U. (Spain) for the industrial predoctoral contract granted to the author Daniel Butrón Benítez.

References:

1) Regulation (EU) 2019/787 European Parliament and Council of 17 April 2019. L130/1-49 (Parlamento europeo y consejo de la unión europea., 2019).

2) Mosedale, J. R., & Puech, J.-L. (1998). Wood maturation of distilled beverages. Trends in Food Science & Technology, 9(3) (1998) 95–101. https://doi.org/10.1016/S0924-2244(98)00024-7

DOI:

Publication date: October 18, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Butrón-Benítez, Daniel1,2*; Valcárcel-Muñoz, Manuel J.2; García-Moreno, M. Valme1; Guillén-Sánchez, Dominico A.1

1 Departamento de Química Analítica, Facultad de Ciencias, Instituto Universitario de Investigación Vitivinícola y Agroalimentaria (IVAGRO) Universidad de Cádiz, Campus Universitario de Puerto Real, 11510 Puerto Real, Cádiz, Spain.
Bodegas Fundador S.L.U., C/ San Ildefonso, nº 3, 11403, Jerez de la Frontera (Cádiz), Spain.

Contact the author*

Keywords

Brandy, wine spirit, wine distillate, ageing, Sherry Cask®

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

The weak role of organic mulches in shaping bacterial communities in grapevine

The interest in sustainable and ecologic agricultural practices in grapevine has grown significantly in recent years in the context of ecological transition. Organic mulches are treatments that support the circular economy and positively affect the soil and the plant. They are an alternative to herbicides and other conventional practices since they may influence soil moisture, erosion, structure and weed control. However, their effects on the soil and must microbiota remain unknown.

A novel approach for the identification of new biomarkers of wine consumption in human urine using untargeted metabolomics

Wine is one of the most representative components of Mediterranean diet. Moderate wine intake together with food, has been positively correlated with reduced risk of many chronic diseases. This beneficial effect seems to be ascribed to elevated polyphenolic content of wine [1]. Traditional approaches for the identification of wine biomarkers consumption include targeted metabolomics that focuses on the quantification of well-defined metabolites, losing a valuable information about a massive number of compounds. On the other hand, untargeted metabolomics can disclose a large quantity of signals corresponding to potential biomarkers in a single analysis with high sensitivity and resolution.

Volatilome in grapevine leaves is defined by the variety and modulated by mycorrhizal symbiosis

Volatile organic compounds (VOCs) constitute a diverse group of secondary metabolites key for the communication of plants with other organisms and for their adaptation to environmental and biotic stresses. The emission of these compounds through leaves is also affected by the interaction of plants with symbiotic microorganisms, arbuscular mycorrhizal fungi (AMF) among them [1]. Our objective was to know the concentration and profile of VOCs emitted by the leaves of two grapevine varieties (Tempranillo, T, and Cabernet Sauvignon, CS, grafted onto R110 rootstocks), inoculated or not with a consortium of five AMF (Rhizophagus irregularis, Funneliformis mosseae, Septoglomus deserticola, Claroideoglomus claroideum and C. etunicatum).

Application of DEXI PM Vigne sustainability tool to the assessment of alternative vineyard protection strategies

Implementing alternative grapevine systems that incorporate sustainable strategies and innovative farming practices is essential. However, we lack tools for measuring the impact of these new practices on the overall sustainability of vineyards. DEXi PM Vigne (Gary et al., 2015) is a tool developed for ex ante assessment of the sustainability of grapevine cropping systems, from the plot to the farm scale. In the present study, we focused on implementing new strategies of integrated crop protection management with limited pesticide use in vineyards.

Mapping grapevine metabolites in response to pathogen challenge: a Mass Spectrometry Imaging approach

Every year, viticulture is facing several outbreaks caused by established diseases, such as downy mildew and grey mould, which possess different life cycles and modes of infection. To cope with these different aggressors, grapevine must recognize them and arm itself with an arsenal of defense strategies.
The regulation of secondary metabolites is one of the first reactions of plants upon pathogen challenge. Their rapid biosynthesis can highly contribute to strengthen the defense mechanisms allowing the plant to adapt, defend and survive.