Terroir 2004 banner
IVES 9 IVES Conference Series 9 Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Abstract

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a physiological response resulting in viticultural effects. Major PRD effects include a reduced canopy size and greatly increased WUE with possible improvements in fruit quality. Experiments conducted under Australian conditions consisted of field-grown grapevines irrigated at variable rates to elucidate a true PRD effect. The effects of PRD on the assimilation and partitioning of C and N in grapevines are reported and the sustainability and economic potential of the PRD system are discussed. Major findings include the effects of PRD on grapevine physiology on the biochemical level where the source:sink relationship between plant organs influences dry matter accumulation and nitrogen assimilation that will influence fertilization needs. Finally, the effects of PRD on berry growth and quality are discussed, especially the accumulation of hexose, amino acids and inorganic ions such as K+, that may have an influence on wine quality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gerhard du Toit

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Non-alcoholic wines: evaluation of chemical profile and biological properties

The market of non-alcoholic wine has notably increased in recent years, driven by growing health awareness and regulatory trends aimed at reducing alcohol consumption.

Non-targeted analysis of C13-norisoprenoid aroma precursors in Riesling

Significant wine aroma can be formed from non-volatile precursors that are linked to sugars, including but not limited to grape-derived monoterpene and C13-norisoprenoid glycosides.

Investigation of VvDXS function and its effects on muscat flavor levels

In the present study the connection between the positional candidate gene VvDXS and muscat flavor was evaluated by investigating the expression profiles in the berries from a Muscat-type cultivar and a neutral cultivar and its nucleotide diversity of full ORF on grapevine accessions.

Relationships between vineyard soil physiochemical properties and under-vine soil cover as potential drivers of terroir in the Barossa

Aims: Soils are an intrinsic feature of the landscape and have influenced culturally and economically important terroir delineation in many wine-producing regions of the world. Soil physiochemical properties govern a wide array of ecosystem services, and can therefore affect grapevine health and fruit development. These physiochemical properties can reflect a combination of factors,

Unveiling Metschnikowia spp.: mechanisms and impacts of bioprotection in winemaking

Bioprotection, leveraging beneficial microorganisms, has emerged as a sustainable approach to modern winemaking, minimizing reliance on chemical preservatives like as sulfur dioxide (SO₂).