Terroir 2004 banner
IVES 9 IVES Conference Series 9 Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Abstract

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a physiological response resulting in viticultural effects. Major PRD effects include a reduced canopy size and greatly increased WUE with possible improvements in fruit quality. Experiments conducted under Australian conditions consisted of field-grown grapevines irrigated at variable rates to elucidate a true PRD effect. The effects of PRD on the assimilation and partitioning of C and N in grapevines are reported and the sustainability and economic potential of the PRD system are discussed. Major findings include the effects of PRD on grapevine physiology on the biochemical level where the source:sink relationship between plant organs influences dry matter accumulation and nitrogen assimilation that will influence fertilization needs. Finally, the effects of PRD on berry growth and quality are discussed, especially the accumulation of hexose, amino acids and inorganic ions such as K+, that may have an influence on wine quality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gerhard du Toit

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Caracterización sensorial preliminar de los vinos tintos de la Isla de Tenerife (Islas Canarias, España)

En la isla de Tenerife (Islas Canarias, Espafia) existen cinco Denominaciones de Origen (D.O.) con una superficie inscrita aproximada de 5.000 hectareas. Actualmente existen 94 bodegas

Launching the GiESCO guide

Considering that the transfer of research results to the professional level is one of the keys to progress, GiESCO proposes to publish a technical guide supported by scientific references and in the form of standard sheets.

Characterising the chemical typicality of regional Cabernet Sauvignon wines

Aim: To define the uniqueness of Australian Cabernet Sauvignon wines by evaluation of the chemical composition (volatile aroma and non-volatile constituents) that may drive regional typicity, and to correlate this with comprehensive sensory analysis data to identify the most important compounds driving relevant sensory attributes.

Assessing the Effectiveness of Electrodialysis in Controlling Brettanomyces Growth in Wine

Brettanomyces yeast can negatively impact the quality and stability of wines, posing a significant challenge to winemakers. [1] This study aims to develop novel management practices to limit Brettanomyces impact on wines by evaluating the effectiveness of electrodialysis (ED) technology in removing magnesium (Mg2+) from wine to prevent the development of Brettanomyces yeast. The ED technique utilizes charged membranes to extract ions from the wine, and it is considered an alternative to cold stabilization that requires less energy. [2]

Mobilizing endogenous transposable elements for grapevine improvement: a genomic and epigenomic approach in New Zealand Sauvignon Blanc

Efforts to improve the New Zealand wine industry’s climate resilience and sustainability through grapevine improvement are limited by germplasm availability and a reliance on Sauvignon Blanc exports. To address this, we are working to generate a population of 12,000 individuals with unique genetic traits, from which to select future clones for major export varieties.

Sauvignon Blanc plantlets are being regenerated from embryogenic callus, using an approach designed to mobilise endogenous transposable elements as mutagens.