Terroir 2004 banner
IVES 9 IVES Conference Series 9 Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Abstract

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a physiological response resulting in viticultural effects. Major PRD effects include a reduced canopy size and greatly increased WUE with possible improvements in fruit quality. Experiments conducted under Australian conditions consisted of field-grown grapevines irrigated at variable rates to elucidate a true PRD effect. The effects of PRD on the assimilation and partitioning of C and N in grapevines are reported and the sustainability and economic potential of the PRD system are discussed. Major findings include the effects of PRD on grapevine physiology on the biochemical level where the source:sink relationship between plant organs influences dry matter accumulation and nitrogen assimilation that will influence fertilization needs. Finally, the effects of PRD on berry growth and quality are discussed, especially the accumulation of hexose, amino acids and inorganic ions such as K+, that may have an influence on wine quality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gerhard du Toit

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Alternative training system for cv ‘Erbaluce’: comparison between pergola and VSP system during 2006 and 2007 years

The ‘Erbaluce‘, a grapevine cultivar from which in the Canavese (Piedmont, Italy) different types of white DOC wines are obtained, is traditionally trained on a support structure commonly known as “pergola” having three to five long “cords” which consist of three cordons and canes interlaced together.

The adaptative capacity of a viticultural area (Valle Telesina, Southern Italy) to climate changes

The viticulture aiming at the production of high quality wine is very important for the landscape conservation, because it allows to combine high farmer income with soil conservation

Exploring the physico-chemical modification of grape seed extracts to improve their clarifying effect in red wine

During winemaking, some byproducts are obtained, such as grape pomace, which represent 13% of winery byproducts.

Climate change is here to stay: adapting vineyards to a warming world

As an industry that thrives more on, but may also be more affected by, vintage variation and regionality than any other agricultural enterprise, grape and wine production is ever more being impacted challenged by climate change.

FREE TERPENE RESPONSE OF ‘MOSCATO BIANCO’ VARIETY TO GRAPE COLD STORAGE

Temperature control is crucial in wine production, starting from grape harvest to the bottled wine storage. Climate change and global warming affect the timing of grape ripening, and harvesting is often done during hot summer days, influencing berry integrity, secondary metabolites potential, enzyme and oxidation phenomena, and even fermentation kinetics. To curb this phenomenon, pre-fermentative cold storage can help preserve the grapes and possibly increase the concentration of key secondary metabolites. In this study, the effect of grape pre-fermentative cold storage was assessed on the ‘Moscato bianco’ white grape cultivar, known for its varietal terpenes (65% of free terpenes represented by linalool and its derivatives) and widely used in Piedmont (Italy) to produce Asti DOCG wines.