Terroir 2004 banner
IVES 9 IVES Conference Series 9 Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Partial rootzone drying (PRD): strategic irrigation management as viticultural tool affecting plant physiology and berry quality

Abstract

Partial rootzone drying (PRD) is an irrigation management technique designed to reduce water use in grapevines without a decline in yield, thereby increasing water use efficiency (WUE). The principle of PRD is to keep part of the root system at a constant drying rate to produce soil derived signals to above-ground plant organs to induce a physiological response resulting in viticultural effects. Major PRD effects include a reduced canopy size and greatly increased WUE with possible improvements in fruit quality. Experiments conducted under Australian conditions consisted of field-grown grapevines irrigated at variable rates to elucidate a true PRD effect. The effects of PRD on the assimilation and partitioning of C and N in grapevines are reported and the sustainability and economic potential of the PRD system are discussed. Major findings include the effects of PRD on grapevine physiology on the biochemical level where the source:sink relationship between plant organs influences dry matter accumulation and nitrogen assimilation that will influence fertilization needs. Finally, the effects of PRD on berry growth and quality are discussed, especially the accumulation of hexose, amino acids and inorganic ions such as K+, that may have an influence on wine quality.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gerhard du Toit

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.

Distinctive flavour or taint? The case of smoky characters in wine

Forest fires in the vicinity of vineyards have significantly increased in the last decade and are a concern for grapegrowers and winemakers in many wine producing countries. The fires cause smoke drift throughout vineyards which cannot be avoided and may result in the production of wines described as ‘smoke tainted’. Such wines are characterized by undesirable sensory characters described as ‘smoky’, ‘burnt’, ‘ash’ aromas and flavours, and also may cause a lingering, unpleasant ashy aftertaste [1; 2].

Denial of the wine-growing landscape

The aim of this presentation is to analysis the impact of the viticultural landscape in communication on labels of wine produced in heroic viticulture areas. To verify whether the ”viticultural landscape

A mechanistic investigation of H/D scrambling processes in flavonoids

Several classes of flavonoids, such as anthocyanins, flavonols, flavanols and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues; even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D scrambling processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism.

Influence of soil characteristics on vine growth, plant nutrient levels and juice properties: a multi-year analysis

Soil physical and chemical properties affect vine nutrition, as indicated by leaf and petiole nutrient content, in a way that may directly impact wine properties.