Terroir 2004 banner
IVES 9 IVES Conference Series 9 Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Abstract

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail. Fermentation performance was monitored through mass loss and growth as measured at OD600. VA, glucose and fructose concentrations were monitored after 21 days of fermentation with the FOSS 2000 Grape Scan. Certain strains were initially less affected by high sugar concentrations than others, but only musts fermented with strains VIN13, WE372, N96 and L2056 contained less than 11 g/L fructose after 21 days. VIN13 and RJ11 produced the lowest VA in the 21°B, 25°B and 28°B musts. Higher VA concentrations were also produced in higher sugar containing musts. It must, however, be kept in mind that the nutrient requirements of yeast stains differ which can affect this, although these must all received sufficient DAP. The fermentation ability of six trains was also monitored in must containing Cu concentrations close to the legal limit in SA. Strains NT50, Collection Cépage Cabernet (CC) and D80 were not significantly affected, whereas musts fermented with strains VIN13, NT112 and RJ11 contained significantly more glucose and fructose after fermentation. The utilization of fructose was also more affected by the copper than that of glucose, which might further had contributed to a sluggish fermentation. This inhibition was also reflected in the growth of the different yeast strains. Copper also increased the VA production by yeast strains with certain strains being affected more than others.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. Du Toit (1), J. Ferreira (1), and M. Du Toit (1,2)

(1) Department of Viticulture and Oenology
(2) Institute for Wine Biotechnology, Stellenbosch University, Z.A-7600, Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Effects of soil and climate on wine style in the Breede River Valley of South Africa: Sauvignon blanc and Cabernet-Sauvignon

Les effets du sol et du climat sur le style de vin ont été évalués pour des vignes irriguées à deux endroits différents de la vallée de la Breede, en Afrique du Sud. L’un des 2 endroits est cependant plus froid que l’autre, principalement en raison de températures nocturnes plus basses.

Identification and formation kinetic study of phenolic compounds-volatile thiols adducts by enzymatic oxidation

By using HPLC-ESI-MS, 1H, 13C and 2D NMR, new addition products between catechin, epicatechin, caftaric acid and 3SH were characterized. Caftaric acid formed more rapidly adducts with 3SH than catechin and epicatechin in the absence of other nucleophiles.

How can yeast modulate Divona’s aromatic profile?

Volatile thiols play a key role in the aromatic expression of white wines, contributing to notes such as passion fruit, grapefruit, and herbal nuances [1]. These compounds, present as non-volatile precursors in grapes, require enzymatic activation to be released and realize their aromatic potential.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].