Terroir 2004 banner
IVES 9 IVES Conference Series 9 Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Abstract

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail. Fermentation performance was monitored through mass loss and growth as measured at OD600. VA, glucose and fructose concentrations were monitored after 21 days of fermentation with the FOSS 2000 Grape Scan. Certain strains were initially less affected by high sugar concentrations than others, but only musts fermented with strains VIN13, WE372, N96 and L2056 contained less than 11 g/L fructose after 21 days. VIN13 and RJ11 produced the lowest VA in the 21°B, 25°B and 28°B musts. Higher VA concentrations were also produced in higher sugar containing musts. It must, however, be kept in mind that the nutrient requirements of yeast stains differ which can affect this, although these must all received sufficient DAP. The fermentation ability of six trains was also monitored in must containing Cu concentrations close to the legal limit in SA. Strains NT50, Collection Cépage Cabernet (CC) and D80 were not significantly affected, whereas musts fermented with strains VIN13, NT112 and RJ11 contained significantly more glucose and fructose after fermentation. The utilization of fructose was also more affected by the copper than that of glucose, which might further had contributed to a sluggish fermentation. This inhibition was also reflected in the growth of the different yeast strains. Copper also increased the VA production by yeast strains with certain strains being affected more than others.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. Du Toit (1), J. Ferreira (1), and M. Du Toit (1,2)

(1) Department of Viticulture and Oenology
(2) Institute for Wine Biotechnology, Stellenbosch University, Z.A-7600, Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

Grapevine root system architecture: empirical insights and first steps towards in silico studies

Root System Architecture (RSA) is crucial for plant resilience and resource uptake, yet remains underexplored in viticulture.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

Application de l’Analyse du Cycle de Vie (ACV) à un domaine viticole

Since 1980, Château de l’Éclair has belonged to SICAREX Beaujolais and has been involved in experimentation for the Beaujolais vineyards. However, it is a commercial estate with profitability and quality constraints, which means that it has to meet the growing environmental expectations of consumers. Given the number of practices claimed to be environment-friendly, it is sometimes difficult to prioritize actions.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.