Terroir 2004 banner
IVES 9 IVES Conference Series 9 Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Abstract

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail. Fermentation performance was monitored through mass loss and growth as measured at OD600. VA, glucose and fructose concentrations were monitored after 21 days of fermentation with the FOSS 2000 Grape Scan. Certain strains were initially less affected by high sugar concentrations than others, but only musts fermented with strains VIN13, WE372, N96 and L2056 contained less than 11 g/L fructose after 21 days. VIN13 and RJ11 produced the lowest VA in the 21°B, 25°B and 28°B musts. Higher VA concentrations were also produced in higher sugar containing musts. It must, however, be kept in mind that the nutrient requirements of yeast stains differ which can affect this, although these must all received sufficient DAP. The fermentation ability of six trains was also monitored in must containing Cu concentrations close to the legal limit in SA. Strains NT50, Collection Cépage Cabernet (CC) and D80 were not significantly affected, whereas musts fermented with strains VIN13, NT112 and RJ11 contained significantly more glucose and fructose after fermentation. The utilization of fructose was also more affected by the copper than that of glucose, which might further had contributed to a sluggish fermentation. This inhibition was also reflected in the growth of the different yeast strains. Copper also increased the VA production by yeast strains with certain strains being affected more than others.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. Du Toit (1), J. Ferreira (1), and M. Du Toit (1,2)

(1) Department of Viticulture and Oenology
(2) Institute for Wine Biotechnology, Stellenbosch University, Z.A-7600, Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Impact of Japanese beetles (Popillia japonica Newman) on the chemical composition of two grape varieties grown in Italy (Nebbiolo and Erbaluce)

The Japanese beetle, Popillia japonica Newman, is considered one of the most harmful organisms due to its ability to feed on more than 300 plant species. Symptoms indicative of adult beetles include feeding holes in host plants extending to skeletonization of leaves when population numbers are high. The vine is one of the species most affected by this beetle. However, the damaged plants, even if with difficulty, manage to recover, bringing the bunches of grapes to ripeness.

Aromatic profile of chardonnay – clone 809: from berry to sparkling wine in an altitude vineyard

ine consumption is linked to the aromatic profile, consumer acceptance, and reflects the viticultural and oenological practices applied, together with the study related to clones is a way to evaluate the adaptation

Key genes in rotundone biosynthesis are affected by temperature, light, water supply, and nitrogen uptake

Rotundone accumulation and biosynthesis is a complicated process. Previous research highlighted that these phenomenons were affected under ecophysiological conditions by viticultural practices (e.g. defoliation or irrigation). Individually, these practices often impact several abiotic factors that are difficult to separate such as temperature, water or nitrogen status, or radiation. Such dissociation can be achieved under controlled environmental conditions using potted vines.

Banques de données biologiques annuelles par terroir et optimisation des itinéraires culturaux

In addition to studies on the edaphic and landscape characteristics of the environment (Dolédec, 1995), the characterization of the physiology of the vine and of parasitism during its vegetative cycle represents an essential component of knowledge and management of the terroirs.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.