Terroir 2004 banner
IVES 9 IVES Conference Series 9 Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Screening of different commercial wine yeast strains: the effect of sugar and copper additions on fermentation and volatile acidity production

Abstract

The aims of this study were to examine the effect of high sugar concentrations of must and copper residues on different commercial wine yeasts. Copper originating from pesticides has been known to inhibit yeast, but it’s effect on fermentation performance and VA production of different yeast strains had not been investigated in detail. Fermentation performance was monitored through mass loss and growth as measured at OD600. VA, glucose and fructose concentrations were monitored after 21 days of fermentation with the FOSS 2000 Grape Scan. Certain strains were initially less affected by high sugar concentrations than others, but only musts fermented with strains VIN13, WE372, N96 and L2056 contained less than 11 g/L fructose after 21 days. VIN13 and RJ11 produced the lowest VA in the 21°B, 25°B and 28°B musts. Higher VA concentrations were also produced in higher sugar containing musts. It must, however, be kept in mind that the nutrient requirements of yeast stains differ which can affect this, although these must all received sufficient DAP. The fermentation ability of six trains was also monitored in must containing Cu concentrations close to the legal limit in SA. Strains NT50, Collection Cépage Cabernet (CC) and D80 were not significantly affected, whereas musts fermented with strains VIN13, NT112 and RJ11 contained significantly more glucose and fructose after fermentation. The utilization of fructose was also more affected by the copper than that of glucose, which might further had contributed to a sluggish fermentation. This inhibition was also reflected in the growth of the different yeast strains. Copper also increased the VA production by yeast strains with certain strains being affected more than others.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

W.J. Du Toit (1), J. Ferreira (1), and M. Du Toit (1,2)

(1) Department of Viticulture and Oenology
(2) Institute for Wine Biotechnology, Stellenbosch University, Z.A-7600, Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Assessing and mapping vineyard water status variability using a miniaturized nir spectrophotometer from a moving vehicle

In the actual scenario of climate change, optimization of water usage is becoming critical in sustainable viticulture. Most of the current approaches to assess grapevine water status and drive irrigation scheduling are either destructive, time and labour consuming and monitor a small, limited number of plants. This work presents a novel methodology using a contactless, miniaturized, low-cost NIR spectrometer to monitor the vineyard water status variability from a moving vehicle, to provide reliable information towards precision irrigation.

Optimizing the use of bentonite for better control of haze formation In white and rosé wines

In winemaking, the appearance of turbidity in white and wine is a serious visual defect, which lowers significantly its commercial value. A major cause of the formation of turbidity in wine is attributed to the presence of temperature-sensitive proteins.