Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Climate component of terroir (Terroir 2006) 9 Climatic zoning and viticulture in Galicia (North West Spain)

Climatic zoning and viticulture in Galicia (North West Spain)

Abstract

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area. The Galician climate is marked by its great diversity that can be explained by the prevailing maritime and continental winds over this part of the world and also due to its topography where a series of N to S mountainous chains check rain-bearing fronts from the Atlantic. This factor gives rise to the appearance of rain shadows particularly suitable for vine growing. A database was established with standardised 1971-2000 climatic data from 53 selected stations. Fourteen parameters and climatic indices commonly used in viticulture zoning studies were calculated. An analysis of principal components identified the main factors related to climatic variability as well as the climatic indices and parameters with major discriminating scores. These indices included those selected by the Geoviticulture Multicriteria Climatic Classification System (GMCCS). Results show that 13 out of the 36 worldwide viticulture climates specified by the GMCCS appear in Galicia confirming the diversity of viticultural climates present in the region. These results also demonstrate the efficacy of the GCCM system for the differentiation of climatic types on a regional level reinforcing the system’s versatility.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

José QUEIJEIRO, Daniel BLANCO and Cristalina ÁLVAREZ

Plant Biology and Soil Science Department, Vigo University, Spain.
Facultade de Ciencias de Ourense, As Lagoas s/n. 32004 Ourense, España

Contact the author

Keywords

mesoclimate, vine, Galicia, zonification

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Relation between phenolic content, antioxidant capacity, oxygen consumption rate of diverse tannins

The work was aimed at comparing some analytical methods used to characterize oenological tannins and the measure of oxygen consumption rate (OCR), in order to provide oenologists with a rapid method to test the antioxidant capacity of tannin based products and a tool to choose the best suited product for each purpose.

Impact of temperature and solar radiation on grape composition variability in the Saint-Emilion winegrowing area 

Grape composition is strongly influenced by climate conditions. Their expected modifications in near future, notably because of increased temperatures, could significantly modify the biochemical composition of berries at harvest, and thus wine typicity and quality. Elevated temperatures favor sugar accumulation in grapes, enhance malic acid degradation and modify the amino acid content. They also reduce significantly anthocyanin accumulation in Merlot, leading to the imbalance between anthocyanins and sugars, while no significant effects on final anthocyanin levels were reported in Tempranillo[1] and finally affect aromas or aroma precursors.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Elucidating white wines peptides: An analytical breaktrough

The chemistry of wine is particularly complex due to biochemical and chemical interactions that significantly modify its organoleptic characteristics and stability over time. Aging on lees is a well-known practice during which various compounds are released, ensuring wines oxidative stability and its overall sensory quality [1,2].

WINE AS AN EMOTIONAL AND AESTHETIC OBJECT: IMPACT OF EXPERTISE

Wine tasting has been shown to provide emotions to tasters (Coste et al. 2018). How will expertise impact this emotional response? Burnham and Skilleås (2012) reported that the cultural, experiential, and aesthetic competencies characterize an expert in wine compared to a novice. Although there is no consensual definition of an aesthetic experience, Burnham and Skilleås (2012) reported that aesthetic appreciation is “disinterested, normative for others and communicable” in comparison to sensory pleasure.