Terroir 2006 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2006 9 Climate component of terroir (Terroir 2006) 9 Climatic zoning and viticulture in Galicia (North West Spain)

Climatic zoning and viticulture in Galicia (North West Spain)

Abstract

Galicia is situated in the NW of the Iberian Peninsula, just north of Portugal and so sharing a mild, maritime climate, certain vine species and a number of long-standing viticultural traditions. In Galicia about 18,000 has are dedicated to wine growing, of which roughly half (46%) correspond to the 6 DOs in the area. The Galician climate is marked by its great diversity that can be explained by the prevailing maritime and continental winds over this part of the world and also due to its topography where a series of N to S mountainous chains check rain-bearing fronts from the Atlantic. This factor gives rise to the appearance of rain shadows particularly suitable for vine growing. A database was established with standardised 1971-2000 climatic data from 53 selected stations. Fourteen parameters and climatic indices commonly used in viticulture zoning studies were calculated. An analysis of principal components identified the main factors related to climatic variability as well as the climatic indices and parameters with major discriminating scores. These indices included those selected by the Geoviticulture Multicriteria Climatic Classification System (GMCCS). Results show that 13 out of the 36 worldwide viticulture climates specified by the GMCCS appear in Galicia confirming the diversity of viticultural climates present in the region. These results also demonstrate the efficacy of the GCCM system for the differentiation of climatic types on a regional level reinforcing the system’s versatility.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2006

Type: Article

Authors

José QUEIJEIRO, Daniel BLANCO and Cristalina ÁLVAREZ

Plant Biology and Soil Science Department, Vigo University, Spain.
Facultade de Ciencias de Ourense, As Lagoas s/n. 32004 Ourense, España

Contact the author

Keywords

mesoclimate, vine, Galicia, zonification

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

Winery by-products as potential bioresources for green valorization and sustainable biotechnological applications

The wine and distillery industries are among the most prominent sectors in EU agriculture, where 75% of grape production is dedicated to winemaking.

SO2 consumption in white wine oxidation: approaches to low-input vinifications based on rapid electrochemical analyses and predictive enology

Oxidative stability is a critical factor in wine shelf-life. SO₂ is commonly added to wine due to its strong antioxidant activity, although there is a general push to reduce SO₂ use in vinification.

Preliminar study of adsorption of unstable white wine proteins using zirconium oxide supported on activated alumina by atomic layer deposition method

A common problem in wineries is haze formation after bottling, mainly caused by unstable proteins present in white wine. The most used material to eliminate these proteins is bentonite.

Hyperspectral imaging for precision viticulture

Precision viticulture aims to optimize vineyard management by monitoring and responding to variability within vine plots. this work presents a comprehensive study on the application of hyperspectral imaging (hsi) technology for monitoring purposes in precision viticulture. authors explore the deployment of hsi sensors on various platforms including laboratory settings, terrestrial vehicles, and unmanned aerial vehicles, facilitating the collection of high-resolution data across extensive vineyard areas.