Terroir 1996 banner
IVES 9 IVES Conference Series 9 The social construction of wine-growing areas: the “Graves de Bordeaux”

The social construction of wine-growing areas: the “Graves de Bordeaux”

Abstract

Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne. Pourtant l’histoire et les hommes ont finement mis en valeur les nuances du milieu géographique pour que la variété des organisations sociales se traduise par des territoires variés avec, coupant l’appellation Graves en deux, l’affirmation du Sautemais et, au sein même de l’aire d’appellation, l’individualisation des Graves de Pessac-Léognan, sans oublier les appellations Barsac et Cérons.

“Graves de Bordeaux” is one of the few wine appellations that has the name of the soil where it grows. The wine growing area is relatively unified from Langon to Bordeaux on the left bank of the Garonne. Nevertheless the geographical differences have been well exploited along the history so that the diversity of social organizations could be related to different wine areas such as the Sautemais appellation that separates the Graves region in two parts. The Pessac-Léognan appellation is as well located inside the Graves appellation area and last but not least the Barsac and Cerons appellations

DOI:

Publication date: February 16, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean-Claude HINNEWINKEL

CERVIN /Université Michel de Montaigne-Bordeaux3 -33607 PESSAC Cedex

Keywords

terroir, AOC, organisation, structure, histoire
terroir, AOC, organization, structure, history

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The wine microbial ecosystem: Molecular interactions between yeast species and evidence for higher order interactions

Fermenting grape juice represents one of the oldest continuously maintained anthropogenic microbial environments and supports a well-mapped microbial ecosystem. Several yeast and bacterial species dominate this ecosystem, and some of these species are part of the globally most studied and best understood individual organisms. Detailed physiological, cellular and molecular data have been generated on these individual species and have helped elucidate complex evolutionary processes such as the domestication of wine yeast strains of the species Saccharomyces cerevisiae. These data support the notion that the wine making environment represents an ecological niche of significant evolutionary relevance. Taken together, the data suggest that the wine fermentation ecosystem is an excellent model to study fundamental questions about the working of microbial ecosystems and on the impact of biotic selection pressures on microbial ecosystem functioning. Indeed, and although well mapped, the rules and molecular mechanisms that govern the interactions between microbial species within this, and other, ecosystems remain underexplored. Here we present data derived from several converging approaches, including microbiome data of spontaneous fermentations, the population dynamics of constructed consortia, the application of biotic selection pressures in directed laboratory evolution, and the physiological and molecular analysis of pairwise and higher order interactions between yeast species. The data reveal the importance of cell wall-related elements in interspecies interactions and in evolutionary adaptation and suggest that predictive modelling and biotechnological control of the wine ecosystem during fermentation are promising strategies for wine making in future.

Dynamics of soil and canopy temperature: a conceptual approach for Alentejo vineyards

Climate change imposes increasing restrictions and risks to Mediterranean viticulture. Extreme heat and drought stress events are becoming more frequent which puts in risk sustainability of Mediterranean viticulture. Moreover row crops e.g. grapevine for wine, are increasingly prone to the impact of more intense/longer exposure time to heat stress. The amplified effects of soil surface energy reflectance and conductance on soil-atmosphere heat fluxes can be harmful for leaf and berry physiology.

Exploring the effect of ripening rates on the composition of aroma and phenolic compounds in Cabernet-Sauvignon wines

The study of cultural practices to delay ripening and the characterization of their effect on wine composition is important in the mitigation of accelerated ripening caused by higher temperatures

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

On quality assurance of winemaking components

This report examines product quality assurance issues arising when technological aids and food additives are utilized in winemaking.