Terroir 1996 banner
IVES 9 IVES Conference Series 9 The social construction of wine-growing areas: the “Graves de Bordeaux”

The social construction of wine-growing areas: the “Graves de Bordeaux”

Abstract

Graves de Bordeaux» est une des rares appellations à porter le nom d’un terroir, au sens agronomique du terme. Et ce territoire vitivinicole présente une relative unité géographique, de Langon à Bordeaux sur la rive gauche de la Garonne. Pourtant l’histoire et les hommes ont finement mis en valeur les nuances du milieu géographique pour que la variété des organisations sociales se traduise par des territoires variés avec, coupant l’appellation Graves en deux, l’affirmation du Sautemais et, au sein même de l’aire d’appellation, l’individualisation des Graves de Pessac-Léognan, sans oublier les appellations Barsac et Cérons.

“Graves de Bordeaux” is one of the few wine appellations that has the name of the soil where it grows. The wine growing area is relatively unified from Langon to Bordeaux on the left bank of the Garonne. Nevertheless the geographical differences have been well exploited along the history so that the diversity of social organizations could be related to different wine areas such as the Sautemais appellation that separates the Graves region in two parts. The Pessac-Léognan appellation is as well located inside the Graves appellation area and last but not least the Barsac and Cerons appellations

DOI:

Publication date: February 16, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean-Claude HINNEWINKEL

CERVIN /Université Michel de Montaigne-Bordeaux3 -33607 PESSAC Cedex

Keywords

terroir, AOC, organisation, structure, histoire
terroir, AOC, organization, structure, history

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Contribution of soil and atmospheric conditions to leaf water potential in grapevines

Etant lié au sol et aux conditions atmosphériques, le statut hydrique influence la physiologie de la vigne d’une part, mais joue aussi un role important en ce qui concerne la qualité du raisin et donc du vin d’autre part. Nous avons mesuré, dans la région de Stellenbosch, le statut hydrique sur des pieds de Sauvignon Blanc non irrigués, implantés sur 2 terroirs différents, l’un froid, l’autre plus chaud.

UNEXPECTED PRODUCTION OF DMS POTENTIAL DURING ALCOOLIC FERMENTATION FROM MODEL CHAMPAGNE-LIKE MUSTS

The overall quality of aged wines is in part due to the development of complex aromas over a long period (1.) The apparition of this aromatic complexity depends on multiple chemical reactions that include the liberation of odorous compounds from non-odorous precursors. One example of this phenomenon is found in dimethyl sulphide (DMS) which, with its characteristic odor truffle, is a known contributor to the bouquet of premium aged wine bouquet (1). DMS supposedly accumulates during the ten first years of ageing thanks to the hydrolysis of its precursor dimethylsulfoniopropionate (DMSp.) DMSp is a possible secondary by-product from the degradation of S-methylmethionine (SMM), an amino acid iden- tified in grapes (2), which can be metabolized by yeast during alcoholic fermentation.

Genomic characterization of extant genetic diversity in grapevine

Dating back to the early domestication period of grapevine (Vitis vinifera L.), expansion of human activity led to the creation of thousands of modern day genotypes that serve multiple purposes such as table and wine consumption. They also encompass a strong phenotypic diversity. Presently, viticulture faces various challenges, which include threatening climatic change scenarios and an historical track record of genetic erosion. Paritularly with regards to wine varieties, there is a pressing need to characterize the extant genetic diversity of modern varieties, as a means to delvier knowledge-based solutions under a rapidly evolving scenario, that may enable improved yields and profiles, resistance to pathogens, and increased resilience to climate change.

Development and application of CRISPR/Cas in grapevine

The development and application of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated protein) technologies have revolutionized genome editing in plants due to its simplicity, high efficiency, and versatility. As an economically important fruit crop worldwide, grapevine genome editing using CRISPR/Cas technologies has also been reported these years. Here we introduce the development briefly of the most popular CRISPR/Cas9 system and also the state-of-the-art CRISPR technologies developed so far. Moreover, we summarize CRISPR/Cas9-mediated applications for gene functional study and trait improvement in grapevine.