Terroir 1996 banner
IVES 9 IVES Conference Series 9 On the relationship between climate and “terroir” at different spatial scales: the input of new methodological tools

On the relationship between climate and “terroir” at different spatial scales: the input of new methodological tools

Abstract

Un grand nombre de travaux ont été consacrés à la mise en éyidence et à la quantification de l’effet du climat sur la qualité de la production viticole. IIs ont permis de caractériser les grands types de production à une large échelle géographique, et d’en évaluer les variations interannuelles au niveau des millésimes. Lorsqu’on souhaite apprécier cependant les particularités au niveau des terroirs locaux, cette influence du climat devient plus délicate à apprécier. Il faut alors prendre en compte les variations spatiales du climat local à une échelle intermédiaire, ainsi que les caractéristiques microclimatiques au niveau de la parcelle viticole, qui sont fortement conditionnées par la situation topographique et le paysage environnant (brise-vent, par ex) ainsi que par l’interaction complexe avec le type de sol (par le biais de ses caractéristiques thermiques et hydriques) et avec les techniques culturales. A cette échelle fine, des moyens nouveaux d’approche méthodologique sont présentés:
– la mise en œuvre de modèles de simulations de la culture, incluant si possible le fonctionnement thermique et hydrique du système sol-plante-atmosphère,
– d’autre part, l’utilisation des outils de télédétection ( en particulier dans l’infrarouge thermique), pour caractériser l’environnement thermique aux différentes échelles concernées.
Les possibilités d’application de ces méthodes sont brièvement présentées, et la conclusion aborde les questions posées par les impacts d’un réchauffement climatique à prendre en compte pour les prochaines décennies.

A large number of studies have been devoted to the quantitative assessment of climate effects upon the quality of vineyard production. They have allowed to broadly characterize the main features of the most important wine production regions, as well as to evaluate their interannual variations (“millesime”). However, when it is needed to focus on smaller scales in order to take into account local features of so-called “terroirs”, the influence of climate is more difficult to assess. In an intermediate scale, spatial variations of local climate elements have to be considered. At the smaller scales (individual fields), the characteristics of microclimate have to be considered: they combine the possible influence of local topography and surrounding landscape (shelterbelts, for instance) and the resulting effects of the complex interaction with soil type (by the way of thermal and hydric properties) and cultural practices. At this fine scale, new methodological tools may be considered:
– the use of crop simulation models, if possible including the description of the thermal and hydric characteristics of the soil-plant-atmosphere system,
– the input of remote sensing ( especially thermal infrared bands) in order to characterize the thermal environment at different scales.
The possibilities and limits of these new tools are briefly presented and the questions raised by the possible impact of a global warming to be considered for the coming decades are presented in conclusion.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002 

Type: Article

Authors

B. SEGUIN

INRA-Centre d’Avignon
Site Agroparc, domaine St Paul 84914 Avignon cedex 9

Keywords

terroir, climat, qualité, modélisation, télédétection
“terroir”, climate, quality, modelling, remote sensing

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Effects of soil water content and environmental conditions on vine water status and gas exchange of Vitis vinifera L. cv. chardonnay

Vine water status has a significant influence on vineyard yield and berry composition (Williams and Matthews, 1990; Williams et al., 1994). It has been hypothesized that the response of plants to soil water deficits may be due to some sort of “root signal” (Davies and Zhang, 1991). This signal probably arises due to the roots sensing a reduction in soil water content or an increase in the mecanical impedance as the soil dries out.

Upscaling the integrated terroir zoning through digital soil mapping: a case study in the Designation of Origin Campo de Borja

homogeneous zones by intersecting several partial zonings of major factors that influence vineyard growth. Each of them follows specific process from their corresponding disciplines. Soil zoning specifically refers to a Soil Resource Inventory map that has traditionally been generated by conventional soil mapping methods. These methods have shortcomings in reaching fine cartographic and categorical details and involve significant expenses, which undermines their applicability. A new framework named Digital Soil Mapping has introduced quantitative models by statistical techniques to establish soil-landscape relationships and is able to provide intensive scale cartography.

In the present study, a microzoning at 1:10.000 scale is generated from an initial zoning, where the conventional soil map with polytaxic map units is replaced by a new one from digital techniques that disaggregates them. The comparison between the zonings considers a quantitative evaluation of capability for each Homogeneous Terroir Unit by means of the Viticultural Quality Index and its categorization based on its distribution by map. The spatial intersection of both maps gives rise to a confusion matrix in which the flows of class variations after the substitution are assessed.

The results show a five-fold increase in the number of Homogeneous Terroir Units identified and a larger differentiation among them, evidenced by a wider range in the capability index distribution. Both elements are accompanied by an increase in the detection of areas of higher potential within previously undervalued uniform zones.These features are a direct effect of the improvements brought by Digital Soil Mapping techniques and would verify the advantages of their implementation in the Integrated Terroir zoning. Eventually, such new highly detailed terroir units would benefit precision viticulture and sustainable management practices.

Molecular cloning and characterization of UDP-glucose: furaneol glucosyltransferase gene from Japanese

2,5-Dimethyl-4-hydroxy-3(2H)-furanone (furaneol) is an important aroma compound in fruits, such as pineapple and strawberry, and is reported to contribute to the strawberry-like note in some wines. Several grapevine species are used in winemaking, and furaneol is one of the characteristic aroma compounds in wines made from American grape (Vitis labrusca) and its hybrid grape, similar to methyl anthranilate. Muscat Bailey A is a hybrid grape variety [V. labrusca (Bailey) x V. vinifera (Muscat Hamburg)], and its wine is one of the most popular in Japan. The inclusion of Muscat Bailey A in the ‘International List of Vine and Varieties and their Synonyms’ managed by the ‘International Organisation of Vine and Wine (OIV)’ in 2013 has further fueled its popularity among winemakers and researchers worldwide.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.

Management of water status in vineyards: meta-analysis of its effects on yield and grape composition

Mediterranean vineyards have been traditionally grown under rainfed conditions, but in recent decades the irrigated area has increased significantly, seeking to minimize the adverse effects of severe water stress on grape quality and yield. Given the large area occupied by vineyards, and the increasing scarcity of water resources, it is necessary to develop strategies for the optimization and efficient use of water to reduce the risk of its overexploitation. The present study aims at valorizing previous knowledge generated in different research projects by means of a meta-analysis of the effects of water status management on vineyard performance.