IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Effect of different pH values on the interaction between yeast mannoproteins and grape seed flavanols

Abstract

The consequences of the global climate change in the vitiviniculture are revealed as a gap between phenolic and technological grape maturities, higher grape sugar concentration that leads to high wine alcohols levels, lower acidities and high pH values, among others. The unbalanced phenolic maturity caused in this scenario leads to harsh astringency and to instable colour of wines. Previous studies have reported that the addition of yeast mannoproteins (MPs) to wines may have positive effects on these two organoleptic properties due to their capability to interact with wine polyphenols [1]; however, studies about the effect of the pH on these interactions have not been carried out so far.

 MPs are located in the outer layer of yeast cell wall (Saccharomyces cerevisiae) and they are naturally released into the wine during alcoholic fermentation when yeast is actively growing or during aging when cell wall breaks down in the process known as autolysis. Also, commercial MPs can be added during winemaking and/or ageing. The aim of this work was to study the effect of different pH values (pH 3.0 and 4.0) on the interactions between a flavanol extract from Vitis vinifera L. Tempranillo seeds and the MPs obtained from Saccharomyces cerevisiae. Here, the isolation of MPs from the cell walls of S. cerevisiae was performed using Zymolyase 20T enzyme. MPs were purified by using ethanol, temperature and dialysis. The obtained MPs were characterized by SDS-PAGE and their molecular weights (MWs) were determined by HRSEC-RID [2]. The protein percentage was determined by the Lowry method. The monosaccharide composition was determined by HPLC-MS after derivatisation with 1-phenyl-3-methyl-5-pyrazolone (PMP) [3]. Four main MP fractions were identified: F1 (~2%), with a MW 528.8 kDa, F2 (~12%) (174.1 kDa), F3 (~61 %) (61.0 kDa) and F4 (~25 %) (<10 kDa). The MP–flavanol interactions were performed at pH=3 and pH=4 and studied by means of HPLC-DAD-MS, HRSEC-RID and Isothermal Titration Calorimetry (ITC). The results showed noticeably differences in the interactions between the MPs fractions and the flavanol extract depending on the pH values. 

References

[1] C. Alcalde-Eon, et al. (2019). Food Res. Int., 126; 108650.
[2] E. Manjón, et al. (2020). J. Agric. Food Chem. 25; 13459
[3] Y. Ruiz-García et al. (2014). Carbohydr Polym. 114; 102.

DOI:

Publication date: June 27, 2022

Issue: IVAS 2022

Type: Poster

Authors

Manjón Elvira1, Bosch-Crespo Diana Marelys1, Dueñas Montserrat1 and Escribano-Bailón Mará Teresa1

1Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca.

Contact the author

Keywords

Saccharomyces cerevisiae, climate change, mannoproteins, flavanols, astringency.

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.