Terroir 1996 banner
IVES 9 IVES Conference Series 9 Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

Salubrity of environment and zoning process: first consideration on the radioactivity of vineyard soils

Abstract

La salubrité du milieu et des aliments intervient de plus en plus lourdement, et souvent négativement, sur la santé de l’homme, aussi bien sur l’individu que sur la société tout entière.
La nécessité, désormais vitale, de trouver des solutions valables à ce grave, problème, sollicite des recherches de plus en plus importantes dans le but de connaître les interactions entre ces variables si complexes.
Dans le secteur vitivinicole, les auteurs avaient déjà fait précédemment des recherches et des communications (OIV, 2001) sur la concentration de la radioactivité dans la chaîne terroir­vigne-raisin-vin, pour un terroir volcanique de la zone des « Castelli Romani» dans le Latium. Ils ont pu déterminer une baisse de la concentration radioactive d’environ 10 fois entre terroir et vigne, et de 100 fois entre terroir et vin.
Nous approfondissons dans ce travail ces recherches élargies aussi à un terroir de type « alluvial », en tentant de faire certaines interprétations en fonction de la physiologie de la vigne (plante pérenne) et de la fermentation de son produit.
Les données obtenues sur certains aliments végétaux à cycle annuel produits sur ces mêmes terroirs, élargissent le cadre des considérations et des hypothèses de travail.

The salubrity of environment and food in the relationship, with a bigger importance in agricultural production, has in the most cases negative sign on the human healthy. According this the salubrity has also a social aspect.
Today exist the high necessity for scientific research and solution for resolve the problem of salubrity, according all factors, which have the importance in the environment.
The authors have published in the previously works (OIV 2001 ), the problem of radioactivity in sequence vineyard soil-vine-grape-wine of specific vineyards soils of “Castelli Romani”, Lazio, vine zone of central Italy. This soil has a volcanic origin. Conceming radioactivity the results showed that the soil / vine ratio was 10 and the soil / wine ratio was 100.
In this research, as a continues of previously research, the observation was done on the one alluvial soil with relationship between radioactivity and physiology process in the vine plant and influence to must fermentation.
The obtained results with the others plant with annual cycle, in the same soils confirm the hypothesis about influence of soil radioactivity to salubrity.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:  Terroir 2002

Type: Article

Authors

SPERA G. (1); CARDONE F. (2); CARGNELLO G. (3); CHERUBINI G. (4)

(1) Institut expérimental pour l’Oenologie – SOP de Velletri – Via Ariana, 1 – 00049 Velletri (RM)- Italie
(2) Università Roma 1 La Sapienza, Facoltà di Medicina and Università de L’Aquila, Dipartimento di Fisica­ – Via Vetoio, 1 – 67100 L’Aquila, Italy
(3) Institut expérimental pour la Viticulture – SOC de technique de culture – Conegliano (TV) – Italie, CRR Lazio-ARPA Lazio- Via M. Polidori,, 27- 01016 Tarquinia (VT)- Italie

Contact the author

Keywords

salubrité, radioactivité, vigne, raisin, vin
salubrity, soil radioactivity, vine, grape, wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Impact of seaweeds extracts applied to grapevine cv Tempranillo

Grapevine is one of the most-frequently phytosanitary treated crop systems. Consequently, restrictions have been applied by the European Commission on the number of pesticide treatments and the maximum quantity of copper fungicides allowed per year. Moreover, there is a need and an increasing demand for more ecological-sustainable agricultural products.
Seaweeds are currently used as fertilizers in viticulture, as they have been proven to be beneficial in several ways related to growth and nutrition.

A versatile genome editing platform for grapevine: improving biotic and abiotic stress resilience 

New Plant Breeding Techniques (NPBTs) have arisen with the objective of surmounting the constraints inherent in conventional breeding methodologies, thereby enhancing plant resilience against both biotic and abiotic stresses. To date the application of genome editing in grapevine is still limited by the necessity to overcome recalcitrance to produce embryogenic calli and to regenerate plants. In our studies, we developed a smart and versatile genetic transformation system carrying all the most promising features of different genome editing approaches. In specific, we joined the GRF-GIF expression to improve regeneration, the systemic movement of the editing transcripts through tRNA-like sequences (TLS) and the cisgenic-like approach to remove transgenes.

Relevance of the polyphenolic profile during oxidative aging in the accumulation and disappearance of oxidative and varietal aromas

The main objective of this work is to study and model the impact of the polyphenolic profile on the stability and quality of wine aroma during oxidative aging.

The interplay between grape ripening and weather anomalies – A modeling exercise

Current climate change is increasing inter- and intra-annual variability in atmospheric conditions leading to grapevine phenological shifts as well altered grape ripening and composition at ripeness. This study aims to (i) detect weather anomalies within a long-term time series, (ii) model grape ripening revealing altered traits in time to target specific ripeness thresholds for four Vitis vinifera cultivars, and (iii) establish empirical relationships between ripening and weather anomalies with forecasting purposes. The Day of the Year (DOY) to reach specific grape ripeness targets was determined from time series of sugar concentrations, total acidity and pH collected from a private company in the period 2009-2021 in North-Eastern Italy. Non-linear models for the DOY to reach the specified ripeness thresholds were assessed for model efficiency (EF) and error of prediction (RMSE) in four grapevine cultivars (Merlot, Cabernet Sauvignon, Glera and Garganega). For each vintage and cultivar, advances or delays in DOY to target specified ripeness thresholds were assessed with respect to the average ripening dynamics. Long-term meteorological series monitored at ground weather station by means of hourly air temperature and rainfall data were analyzed. Climate statistics were obtained and for each time period (month, bimester, quarter and year) weather anomalies were identified. A linear regression analysis was performed to assess a possible correlation that may exist between ripening and weather anomalies. For each cultivar, ripeness advances or delays expressed in number of days to target the specific ripening threshold were assessed in relation to registered weather anomalies and the specific reference time period in the vintage. Precipitation of the warmest month and spring quarter are key to understanding the effect of climate change on sugar ripeness. Minimum temperatures of May-June bimester and maximum temperatures of spring quarter best correlate with altered total acidity evolution and pH increment during the ripening process, respectively.

Valorization of grape marc in a biorefinery loop for producing short- and medium-chain fatty acids, hydrogen, and methane, with polyphenol recovery

Global grape production amounts to approximately 70 million tons per year, with Europe contributing 61% of the world’s wine output, primarily from Italy, France, and Spain.