Terroir 1996 banner
IVES 9 IVES Conference Series 9 Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)

Soil functional characteristics for qualitative Sangiovese wine production in Tuscany (Italy)


Le but de ce travail est de faire une synthèse des résultats de plusieurs années de recherche en Italie centrale, sur les caractéristiques fonctionnelles du sol pour la production de vin de qualité. Le cépage de référence est le Sangiovese. Un dispositif de 65 parcelles expérimentales a été utilisé pendant une période de 2 à 5 ans. Les paramètres étudiés sont les stades phénologiques, le rendement par pied, le nombre de grappes, le poids moyen des grappes, le taux d’accumulation des sucres dans les baies, en relation avec le débourrement végétatif, la floraison et la véraison. Les résultats œnologiques ont été mis en relation avec les stades phénologiques pour obtenir une grille de valeurs de référence pour chacun des principaux paramètres agronomiques considérés.

The aim of this work is to summarize the results of several years of research work carried out in Central Italy, concerning soil functional characteristics for qualitative wine production. The reference variety was the Sangiovese vine. A set of 65 experimental plots were utilized during a time span varying from two to five years. Yield components, as well as phenological phases, were recorded. The main chemical characteristics of the grapes from each experimental plot were analyzed at vintage and grape samples were processed using the standard techniques for small-lot wine making. A relationship was established between enological and phenological results. An evaluation of the performance of each experimental vineyard, for every year of trial, was made, and a classification of the plots in terms of matching the optimal phenology was obtained. A matching table considering soil functional parameters and their interaction against site performance classes was finally built up, the final aim being the zoning of wine territories. A selection of all the soil qualities studied was made in order to take into account those which proved to be more important and, at the same time, which it was possible to routinely survey, i.e. available water capacity, aggregate stability, degree of structure, class of internal drainage, presence of a water table, electrical conductivity, vertic properties, rooting depth.





Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article



* Istituto Sperimentale per lo Studio e la Difesa del Suolo, Firenze, Italia
** Istituto Sperimentale per la viticoltura, Arezzo, Italia


sol, caractéristiques fonctionnelles, Sangiovese, zonage, Italie
soil, functional characters, Sangiovese, zoning, Italy


IVES Conference Series | Terroir 2002


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.