Terroir 1996 banner
IVES 9 IVES Conference Series 9 The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

The albarizas and the viticultural zoning of Jerez­-Xérès-Sherry and Manzanilla-Sanlúcar de Barrameda registered apellations of origin (Cadiz, Spain)

Abstract

Le terme ”Albariza” (du latin “albus“, blanc) déterminait à l’origine un type particulier du terrain calcaire, mais à présent il sert aussi à définir les sols et la bibliographie géologique actuelle le cite également pour de roches sédimentaires originaires du Neogene Betic.
Dans ce travail, les auteurs montrent la distribution et la géomorphologie des formations “albarizas” et sa participation aux UTB des Appellations d’Origine Contrôlée citées (AOC).
Les horizons du sol, du sous-sol et la roche mère des parcelles viticoles avec le cépage Palomino Fino sont décrits.
Le profil type du sol est ApC avec des variantes (ApC1 C; ApCkC) et avec une profondeur > 4 mètres. Dans le terre fine (Ø < 2 mm) le niveau de matière organique est très faible (< 20 g kg-1 ), les niveaux des carbonates très élevés(≈ 400 g kg-1 ) et la calcaire actif variable (120- 300 g kg-1 ). La CEC est de 20 cmolc kg1 environ et la saturation en bases du 100% (Ca2+ prédominant). La texture est argilo-limoneuse.
Le densité apparente (Da), dans des échantillons inalterés, variable (800-1400 kg M-3) et la porosité totale (Pt) du 58%. La capacité d’aireation (CA) est très élevée dans l’horizon superficiel (30% environ) et faible quoique variable dans le sous-sol (7-17%). L’eau disponible (RU) est de 12-20% et la permeabilité des echantillons saturés lente.
Ces paramètres dont nous venons de parler se complémentent avec des études en lame mince.
L’information ainsi obtenue ajoutée aux doMées climatiques, géomorfologiques, viticoles … est utilisée pour la delimitation des terroirs “albarizas” dans le zonage des AOC citées ci­ dessus.

The term albariza (L. albus, white) was originally applied to a special type of calcareous terrains. Nowadays it is also applied to soils and, in recent geological bibliography, to sedimentary rocks from the Betic Neogene with a particular origin, composition and structure.
In this work, we report the distribution and the geomorphology of the albarizas as well as its presence in diverse UTB in Jerez-Xérès-Sherry and Manzanilla-Sanlucar de Barrameda Registered Appellations of Origin (AOC) zones. The soil cover, subsoil and geological substratum horizons from a number of vineyards have been studied, being the predominant cultivar Palomino Fino.
The soil profile type is ApC with its variations (ApC1C; ApCkC), being high the effective soil depth (>4 m). Organic

matter content in fine earth is very low (<20 g Kg1 ), and total carbonates very high (≈ 400 g Kg-1 ); active lime content is diverse (120-300 g Kg-1 ). The CEC is about 20 cmolc Kg-1 , with a 100% base saturation, mainly due to Ca2+. The predominant soil textural classes are silty clay and silty clay loam.
Bulk density, in unaltered samples, ranges from 850 to 1300 kg m-3 being the average total porosity of 58 %. The air capacity is extremely high in the plough horizon (≈ 20 %). Available soil-water varies from 6 to 21 %. Permeability in saturated samples is slow (0.2-4 cm h-1).
The parameters cited above are completed and explained through the study of thin sections from that material. This information together with other data (climate, geomorphology, vitivinicoles data …) are used for the zoning of the albarizas terrains in Jerez-Xérès-Sherry and Manzanilla-Sanlucar de Barrameda AOC zones.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

PANEQUE, G. (1), ROCA, M.(2); ESPINO, C.(1); PARDO, C. (2), ALDECOA, J. (2), PANEQUE, P. (1)

(1) Departamento de Cristalografia, Mineralogia y Quimica Agricola. Universidad de Sevilla. Campus de Reina Mercedes sin (41071 Seville, Spain)
(2) Edafologia. Escuela Universitaria de Ingenieria Técnica Agricola. Cortijo de Cuarto. (Seville, Spain)

Keywords

albarizas, Jerez-Xérès-Sherry, Sanlucar de Barrameda, zonage vitivinicole, terroir
albarizas, Jerez-Xérès-Sherry; Sanlucar de Barrameda, viticultural zoning; terroirs

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Soluble solids and firmness responses of a very slow ripening mutant to ripening acceleration treatments

Wine grapes have the ability to accumulate high amounts of hexoses (glucose and fructose), which is considered one of the main processes occurring during the ripening stage. Sugar accumulation dynamics respond to genetic, environmental and vineyard management factors, with a changing climate leading to advanced and faster sugar accumulation worldwide. Research on mitigation techniques to this phenomenon is ongoing, with the largest focus being vineyard techniques to delay sugar accumulation. Breeding represents another powerful tool to address the issue of high sugar concentration at harvest, since historical trends of selecting best sugar-accumulators may be inverted to breed varieties that accumulate diminished concentrations of hexoses while maintaining optimal acidity, color, mouthfeel and aroma compounds.

The generation of suspended cell wall material may limit the effect of ultrasound in some varieties

The disruptive effect exerted by high-power ultrasound (US) on plant cell walls, natural barriers to the diffusion of compounds of interest during the maceration of red wines, is established as the reason behind the chromatic improvement that its treatment causes. However, sometimes this improvement is not observed, especially with short maceration times. The presence of a high quantity of suspended cell wall material, which formation is favored by the sonication, could be the cause of this lack of positive results since this cell wall material has a high affinity for phenolic compounds.

Étude de la flore levurienne de différents terroirs alsaciens

L’utilisation de levures sélectionnées est généralement considérée comme le moyen d’éviter les problèmes fermentaires. Néanmoins de nombreux viticulteurs pensent que ces levures sont à l’origine d’une standardisation des vins et militent pour le respect d’une flore indigène (Bourguignon, 1992).

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.