Terroir 1996 banner
IVES 9 IVES Conference Series 9 The« Sigales’ method »

The« Sigales’ method »

Abstract

Le comportement de la vigne est étroitement lié aux propriétés hydriques des sols surtout dans leurs parties profondes. Cette importance majeure des variables les moins accessibles à l’observation rend difficile la réalisation de cartes de sols pertinentes.
Connaissance et expérience du vigneron sont extrêmement riches d’informations.
C’est pourquoi il est placé au cœur de la réflexion, de façon à ce que les compétences scientifiques et techniques des experts et les observations pratiques des hommes de terrain s’enrichissent mutuellement.
Cette « méthode » est basée sur un système de réunions, de formation, qui permet une validation systématique en salle et sur le terrain des hypothèses de spatialisation cartographique.
Ainsi, avec des moyens raisonnables, deux buts sont atteints : la création de documents cartographiques validés et adaptés et la formation des vignerons, acteurs principaux de la filière viticole.

The behaviour of the grape plant is directly related to the availability of water in the deep and very deep ground layers. This major influence of the less accessible variables makes creation of relevant soil maps difficult.
The knowledge and the experience of the wine grower are the keys to gather meaningful information.
In the « Sigales’method » we try first to give sense to the observations of the wine growers and of their technical team by collective work. Then we draw more accurate maps that ve validate outside with them.
With affordable efforts we achieve two goals : validated and accepted maps and educated wine growers.

DOI:

Publication date: February 15, 2022

Issue:  Terroir 2002

Type: Article

Authors

Isabelle LETESSIER and Cédric.FERMOND

SIGALES Etudes de Sols et de Terroirs – 453 route de Chamrousse 38410 • St Martin d’Uriage (Fr)

Contact the author

Keywords

terroirs viticoles, pédagogie, cartographie, étude des sols
“viticultural terroirs”, pedagogy, cartography

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Measurement of redox potential as a new analytical winegrowing tool

Excell laboratory has initiated the development of an analytical method based on electrochemistry to evaluate the ability of wines to undergo or resist to oxidative phenomena. Electrochemistry is a powerful tool to probe reactions involving electron transfers and offers possibility of real-time measurements. In that context, the laboratory has implemented electrochemical analysis to assess oxidation state of different wine matrices but also in order to evaluate oxidative or reduced character of leaf and soil. Initially, our laboratory focused on dosage of compounds involved in responses of plant stresses and we were also interested in microbiological activity of soils. These analyses were compared with the measurement of redox potential (Eh) and pH which are two fundamental variables involved in the modulation of plant metabolism. Indeed, the variation of redox states of the plant reflects its biological activity but also its capacity to absorb nutriments. The Eh-pH conditions mainly determine metabolic processes involved in soil and leaf and our goal is to determine if this combined analytical approach will be sufficiently precise to detect biological evolutions (plant health, parasitic attack…).

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Influence Of Phytosterols And Ergosterol On Wine Alcoholic Fermentation For Saccharomyces Cerevisiae Strains

Sterols are a fraction of the eukaryotic lipidome that is essential for the maintenance of the cell membrane integrity and their good functionality. During alcoholic fermentation, they ensure yeast growth, metabolism and viability, as well as resistance to osmotic stress and ethanol inhibition. Two sterol sources can support yeasts to adapt to fermentation stress conditions: ergosterol, produced by yeast in aerobic conditions, and phytosterols, plant sterols found in grape musts imported by yeasts in anaerobiosis. Little is known about the physiological impact of the assimilation of phytosterols in comparison to ergosterol and the influence of sterol type on fermentation kinetics parameters.

Pratiques de taille et développement des jeunes vignes

Dans le cadre de TerclimPro 2025, Gonzaga Santesteban a présenté l’article IVES Technical Reviews. Retrouvez la présentation ci-dessous ainsi que l’article associé : https://ives-technicalreviews.eu/article/view/8465

Redwine project: how to valorize CO2 and effluents from wineries in vineyards and winemaking with microalgae biomass

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU green deal aims to achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral eu economy by 2050. The deal strongly encourages GHG reducing measures at local, national and european levels. The redwine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq.