Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Abstract

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays. Cette étude a pour but de déterminer les zones aptes à la culture de la vigne, en se basant sur l’analyse du mésoclimat de cette province, et de définir l’aptitude viticole de ces zones et leur délimitation géographique.
Des indices écologiques sont calculés sur de longues séries de données, provenant d’un réseau de stations météorologiques. La comparaison de ces indices a permis de sélectionner les plus représentatifs et de grouper les mésoclimats similaires.
Dans la province de San Juan, six zones climatiques ont été définies, caractérisant le comportement de la vigne selon le type mésoclimatique. L’intégrale thermique de base 13°C et l’indice des températures minimales du mois avant récolte dans cette région chaude sont les variables principales qui permettent ce zonage.

The aim of an agroclimatic zoning is to characterize areas, which have different capacities for the vine growing production. The Province of San Juan is the hottest grapes and wines producing region of Argentine. This study aims at determine the zones in the province which are competent for the vineyards thanks to analysis of microclimate, and to define their agricultural and enological potential.
Ecological indices coming from databases of meteorological stations have been calculated. The comparison among these indices allowed to select the most representative of them and to gather similar mesoclimates.
In the Province of San Juan, six climatic zones have been characterized, each of them corresponding to a specific vine behaviour. This zoning has been made thanks to two main indices: the thermic integral basis 13°C and the indices of minimal temperature during the month before harvesting.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

H. VILA, M. CAÑADAS, C. LUCERO, M. GRASSIN

Station Expérimentale Agronomique (EËA) INTA Mendoza
Av. San martin 3853 -5507 Chacras de Coria-Mendoza- Argentine

Keywords

vigne, zonage, mésoclimat, potentiel viticole
vine, zoning, mesoclimate, viticultural potential

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Challenges and opportunities for increasing organic carbon in vineyard soils: perspectives of extension specialists

Context description and research question: an increasing number of farmers are considering the impact of conservation practices on soil health to guide sustainable management of vineyards. Understanding impacts of soil management on soil organic carbon (SOC) is one lever for adoption of agroecological practice with potential to help maintain or improve soil health while building SOC stocks to mitigate climate change (Amelung et al., 2020).

How geographical origin and vineyard management influence cv. Cabernet-Sauvignon in Chile – Machine learning based quality prediction

Aims: The aims of this study were to i) characterize the impact of geographical origin and viticulture treatments on Chilean Cabernet-Sauvignon, and ii) develop machine learning models to predict its quality. 

Viticultura protegida: uso de mallas sombreadoras fotoselectivas como una herramienta para enfrentar la crisis climática en uva de mesa en el norte de Chile

The production of table grapes in Chile is of great importance, being one of the main established fruit crops with over 43,000 hectares distributed across a diverse climate range, from the southern limit of the Atacama desert to the mediterranean zone. Chile is also one of the leading exporters of table grapes. producers must confront the challenges posed by the climate crisis, such as decreased rainfall, increased heatwaves, and extreme temperature events during the growing season, mainly associated with desertification in northern Chile (Atacama and Coquimbo regions).

Effect of ozone application for low-input postharvest dehydration of wine grapes 

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g. sweet, dry/reinforced). The modern facilities (dehydrating rooms) used for this purpose are equipped with systems for artificially controlling the inside environment parameters, to obtain the desired dehydration kinetic and preserve the grapes from grey mold (Botrytis cinerea) infection, However, the conditioning systems are extremely energy-demanding and the identification and practical applications of solutions effective in controlling/reducing the postharvest decay would reduce the costs of the operation of the dehydration facilities. To this end, we explored the potential of ozone-based treatments on harvested grapes and preliminarily tested if the treatment could impact the normal behavior and metabolism of grapes during the traditionally slow dehydration practice.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.