Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Abstract

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays. Cette étude a pour but de déterminer les zones aptes à la culture de la vigne, en se basant sur l’analyse du mésoclimat de cette province, et de définir l’aptitude viticole de ces zones et leur délimitation géographique.
Des indices écologiques sont calculés sur de longues séries de données, provenant d’un réseau de stations météorologiques. La comparaison de ces indices a permis de sélectionner les plus représentatifs et de grouper les mésoclimats similaires.
Dans la province de San Juan, six zones climatiques ont été définies, caractérisant le comportement de la vigne selon le type mésoclimatique. L’intégrale thermique de base 13°C et l’indice des températures minimales du mois avant récolte dans cette région chaude sont les variables principales qui permettent ce zonage.

The aim of an agroclimatic zoning is to characterize areas, which have different capacities for the vine growing production. The Province of San Juan is the hottest grapes and wines producing region of Argentine. This study aims at determine the zones in the province which are competent for the vineyards thanks to analysis of microclimate, and to define their agricultural and enological potential.
Ecological indices coming from databases of meteorological stations have been calculated. The comparison among these indices allowed to select the most representative of them and to gather similar mesoclimates.
In the Province of San Juan, six climatic zones have been characterized, each of them corresponding to a specific vine behaviour. This zoning has been made thanks to two main indices: the thermic integral basis 13°C and the indices of minimal temperature during the month before harvesting.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

H. VILA, M. CAÑADAS, C. LUCERO, M. GRASSIN

Station Expérimentale Agronomique (EËA) INTA Mendoza
Av. San martin 3853 -5507 Chacras de Coria-Mendoza- Argentine

Keywords

vigne, zonage, mésoclimat, potentiel viticole
vine, zoning, mesoclimate, viticultural potential

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

An innovative 21st century frost alert system for an age-old viticulture challenge

Damage during the budbreak period due to spring season frosts remains one of the most significant weather-related challenges to viticulture around the world. For example, in 2021, €2bn of estimated damage was reported in france while >50% of vineyards were badly affected in the UK in 2017.

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data

Modelling vine water stress during a critical period and potential yield reduction rate in European wine regions: a retrospective analysis

Most European vineyards are managed under rainfed conditions, where seasonal water deficit has become increasingly important. The flowering-veraison phenophase represents an important period for vine response to water stress, which is seldomly thoroughly evaluated. Therefore, we aim to quantify the flowering-veraison water stress levels using Crop Water Stress Indicator (CWSI) over 1986–2015 for important European wine regions, and to assess the respective potential Yield Lose Rate (YLR). Additionally, we also investigate whether an advanced flowering-veraison phase may help alleviating the water stress with improved yield. A process-based grapevine model STICS is employed, which has been extensively calibrated for flowering and veraison stages using observed data at 38 locations with 10 different grapevine varieties. Subsequently, the model is being implemented at the regional level, considering site-specific calibration results and gridded climate and soil datasets. The findings suggest wine regions with stronger flowering-veraison CWSI tend to have higher potential YLR. However, contrasting patterns are found between wine regions in France-Germany-Luxembourg and Italy-Portugal-Spain. The former tends to have slight-to-moderate drought conditions (CWSI<0.5) and a negligible-to-moderate YLR (<30%), whereas the latter possesses severe-to-extreme CWSI (>0.5) and substantial YLR (>40%). Wine regions prone to a high drought risk (CWSI>0.75) are also identified, which are concentrated in southern Mediterranean Europe. An advanced flowering-veraison phase may have benefited from cooler temperatures and a higher fraction of spring precipitation in wine regions of Italy-Portugal-Spain, resulting in alleviated CWSI and moderate reductions of YLR. For those of France-Germany-Luxembourg, this can have reduced flowering-veraison precipitation, but prevalent alleviations of YLR are also found, possibly because of shifted phase towards a cooler growing season with reduced evaporative demands. Overall, such a retrospective analysis might provide new insights towards better management of seasonal water deficit for conventionally vulnerable Mediterranean wine regions, but also for relatively cooler and wetter Central European regions.

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.

Trans-resveratrol concentrations in wines Cabernet Sauvignon from Chile

This study evaluated the levels of trans-resveratrol in commercial wines made from Cabernet Sauvignon grapes from different valleys of Chile stilbenes. The Cabernet Sauvignon is the most planted variety in Chile, being 38% of the total vineyard country. Chile is the fourth largest wine exporter in the world, so it is important to evaluate the Cabernet-Sauvignon wines in their concentration levels of trans-resveratrol and its relation to the benefits provided to human health in moderate consumption. Evaluation comprises commercial wines from different valleys of Chile and its relationship with climatic characteristics, soil and vineyard handling.