Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Abstract

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays. Cette étude a pour but de déterminer les zones aptes à la culture de la vigne, en se basant sur l’analyse du mésoclimat de cette province, et de définir l’aptitude viticole de ces zones et leur délimitation géographique.
Des indices écologiques sont calculés sur de longues séries de données, provenant d’un réseau de stations météorologiques. La comparaison de ces indices a permis de sélectionner les plus représentatifs et de grouper les mésoclimats similaires.
Dans la province de San Juan, six zones climatiques ont été définies, caractérisant le comportement de la vigne selon le type mésoclimatique. L’intégrale thermique de base 13°C et l’indice des températures minimales du mois avant récolte dans cette région chaude sont les variables principales qui permettent ce zonage.

The aim of an agroclimatic zoning is to characterize areas, which have different capacities for the vine growing production. The Province of San Juan is the hottest grapes and wines producing region of Argentine. This study aims at determine the zones in the province which are competent for the vineyards thanks to analysis of microclimate, and to define their agricultural and enological potential.
Ecological indices coming from databases of meteorological stations have been calculated. The comparison among these indices allowed to select the most representative of them and to gather similar mesoclimates.
In the Province of San Juan, six climatic zones have been characterized, each of them corresponding to a specific vine behaviour. This zoning has been made thanks to two main indices: the thermic integral basis 13°C and the indices of minimal temperature during the month before harvesting.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

H. VILA, M. CAÑADAS, C. LUCERO, M. GRASSIN

Station Expérimentale Agronomique (EËA) INTA Mendoza
Av. San martin 3853 -5507 Chacras de Coria-Mendoza- Argentine

Keywords

vigne, zonage, mésoclimat, potentiel viticole
vine, zoning, mesoclimate, viticultural potential

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Anthocyanin profile is differentially affected by high temperature, elevated CO2 and water deficit in Tempranillo (Vitis vinifera L.) clones

Anthocyanin potential of grape berries is an important quality factor in wine production. Anthocyanin concentration and profile differ among varieties but it also depends on the environmental conditions, which are expected to be greatly modified by climate change in the future. These modifications may significantly modify the biochemical composition of berries at harvest, and thus wine typicity. Among the diverse approaches proposed to reduce the potential negative effects that climate change may have on grape quality, genetic diversity among clones can represent a source of potential candidates to select better adapted plant material for future climatic conditions. The effects of individual and combined factors associated to climate change (increase of temperature, rise of air CO2 concentration and water deficit) on the anthocyanin profile of different clones of Tempranillo that differ in the length of their reproductive cycle were studied. The aim was to highlight those clones more adapted to maintain specific Tempranillo typicity in the future. Fruit-bearing cuttings were grown in controlled conditions under two temperatures (ambient temperature versus ambient temperature + 4ºC), two CO2 levels (400 ppm versus 700 ppm) and two water regimes (well-watered versus water deficit), both in combination or independently, in order to simulate future climate change scenarios. Elevated temperature increased anthocyanin acylation, whereas elevated CO2 and water deficit favoured the accumulation of malvidin derivatives, as well as the acylation and tri-hydroxylation level of anthocyanins. Although the changes in anthocyanin profile observed followed a common pattern among clones, such impact of environmental conditions was especially noticeable in one of the most widely distributed Tempranillo clones, the accession RJ43.

Integrated sustainability assessment in viticulture: An indicator-based approach applied to organic vineyards

Over the past two decades, sustainable vineyard management practices have become increasingly important as the wine industry is facing critical challenges, including climate change, biodiversity loss, and soil degradation.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.