Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Characterization of Mesoclimatic zones competent for the culture of vine (vitis vinifera l.) in the province of San Juan, Argentina

Abstract

Le zonage agroclimatique a pour objet de caractériser des lieux ayant des aptitudes distinctes pour la production de la vigne. La province de San Juan en Argentine est l’une des régions vitivinicoles les plus chaudes du pays. Cette étude a pour but de déterminer les zones aptes à la culture de la vigne, en se basant sur l’analyse du mésoclimat de cette province, et de définir l’aptitude viticole de ces zones et leur délimitation géographique.
Des indices écologiques sont calculés sur de longues séries de données, provenant d’un réseau de stations météorologiques. La comparaison de ces indices a permis de sélectionner les plus représentatifs et de grouper les mésoclimats similaires.
Dans la province de San Juan, six zones climatiques ont été définies, caractérisant le comportement de la vigne selon le type mésoclimatique. L’intégrale thermique de base 13°C et l’indice des températures minimales du mois avant récolte dans cette région chaude sont les variables principales qui permettent ce zonage.

The aim of an agroclimatic zoning is to characterize areas, which have different capacities for the vine growing production. The Province of San Juan is the hottest grapes and wines producing region of Argentine. This study aims at determine the zones in the province which are competent for the vineyards thanks to analysis of microclimate, and to define their agricultural and enological potential.
Ecological indices coming from databases of meteorological stations have been calculated. The comparison among these indices allowed to select the most representative of them and to gather similar mesoclimates.
In the Province of San Juan, six climatic zones have been characterized, each of them corresponding to a specific vine behaviour. This zoning has been made thanks to two main indices: the thermic integral basis 13°C and the indices of minimal temperature during the month before harvesting.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

H. VILA, M. CAÑADAS, C. LUCERO, M. GRASSIN

Station Expérimentale Agronomique (EËA) INTA Mendoza
Av. San martin 3853 -5507 Chacras de Coria-Mendoza- Argentine

Keywords

vigne, zonage, mésoclimat, potentiel viticole
vine, zoning, mesoclimate, viticultural potential

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Adapting the vineyard to climate change in warm climate regions with cultural practices

Since the 1980s global regime shift, grape growers have been steadily adapting to a changing climate. These adaptations have preserved the region-climate-cultivar rapports that have established the global trade of wine with lucrative economic benefits since the middle of 17th century. The advent of using fractions of crop and actual evapotranspiration replacement in vineyards with the use of supplemental irrigation has furthered the adaptation of wine grape cultivation. The shift in trellis systems, as well as pruning methods from positioned shoot systems to sprawling canopies, as well as adapting the bearing surface from head-trained, cane-pruned to cordon-trained, spur-pruned systems have also aided in the adaptation of grapevine to warmer temperatures. In warm climates, the use of shade cloth or over-head shade films not only have aided in arresting the damage of heat waves, but also identified opportunities to reduce the evapotranspiration from vineyards, reducing environmental footprint of vineyard. Our increase in knowledge on how best to understand the response of grapevine to climate change was aided with the identification of solar radiation exposure biomarker that is now used for phenotyping cultivars in their adaptability to harsh environments. Using fruit-based metrics such as sugar-flavonoid relationships were shown to be better indicators of losses in berry integrity associated with a warming climate, rather than solely focusing on region-climate-cultivar rapports. The resilience of wine grape was further enhanced by exploitation of rootstock × scion combinations that can resist untoward droughts and warm temperatures by making more resilient grapevine combinations. Our understanding of soil-plant-atmosphere continuum in the vineyard has increased within the last 50 years in such a manner that growers are able to use no-till systems with the aid of arbuscular mycorrhiza fungi inoculation with permanent cover cropping making the vineyard more resilient to droughts and heat waves. In premium wine grape regions viticulture has successfully adapted to a rapidly changing climate thus far, but berry based metrics are raising a concern that we may be approaching a tipping point.

Qualitative modelling of factors influencing the development of Black rot, for the prediction of damage to bunches

Vines are one of the most pesticide-intensive crops in France, and reducing their use is a major challenge for both the environment and human health.

The opportunities offered by the climate change

Based on the results of experiments since 2000 at the Institut Agro Montpellier and at INRAE – Pech Rouge, and on the international experience acquired during scientific missions, a global reflection on the opportunities offered by climate change is proposed.

Gambellara zoning: climate and soil effect on the aromatic fresh and dried grape composition and wine aroma

La région de production de la Gambellara et Recioto di Gambellara DOC (variété Garganega), tout en n’intéressant qu’une surface limitée, présente une certaine variabilité de milieu due à la morphologie du territoire (colline et plaine), à l’état actuel des sols et aux variations climatiques entre les différents sites. Pour les années 2001, 2002

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes
such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species
diversity of many of the relevant ecological niches within the broader wine environment, from vineyard
soils to plants and grapes to fermentation. The data highlight that species identities and diversity
significantly impact agronomic performance of vineyards as well as wine quality, but the complexity
of these systems and of microbial growth dynamics has defeated attempts to offer actionable
tools to guide or predict specific outcomes of ecosystem-based interventions.