Terroir 1996 banner
IVES 9 IVES Conference Series 9 From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

Abstract

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins. De nombreuses informations différentes doivent être réunies et analysées afin de trouver la position optimale pour des cépages avec des périodes de maturité différentes qui ensuite déterminent la région. De nouveaux logiciels, tel qu’un Système d’information Géographique (SlG), permettent d’enregistrer et d’analyser en détail les facteurs importants.
L’un des objectifs d’une application du SIG en Franconie / Allemagne est une classification climatique des vignobles et l’introduction d’un zonage climatique. La somme de la radiation directe se situe au centre de l’évaluation climatique des surfaces viticoles, car elle détermine la quantité de chaleur reçue par une position. Ceci varie avec les conditions de relief, calculées à l’aide d’un modèle de terrain digital sur la base des cartes topographiques. Dans ces conditions, il est possible de cons tituer des cartes d’inclination et d’exposition. On peut en conclure que les zones de même déclivité et d’exposition reçoivent la même insolation.
Le calcul de la somme de radiation, particubèrement pendant les mois de maturité, permet un zonage climatique local et la délimitation des surfaces en Franconie aptes à la viticulture. Sur la base de la classification climatique, la quantité d’air froid, le risque de gel ainsi que la fréquence du brouillard peuvent être inclus dans l’évaluation. Partant de cette évaluation locale du climat, les régions de même clémence de climat peuvent être clairement délimitées.

The climatic valuation of vineyards and viticultural regions in the northern hemisphere bas a high importance for the cultivation of grape varieties with different ripeness development. A large amount of different information have to be compiled and analysed to work out the optimal locations for grape varieties with different ripeness periods within specific areas. New computer software such as a Geographic Information System (GIS) enables the detailed recording and analysis of viticulturally relevant factors.

One of the objectives of the GIS application in Franconia / Germany is the climatic classification of vineyards and the establishment of a climatic zoning. The main aspect of the climatic valuation is the sum of the direct radiation on vineyard sites. The local climate in northern viticultural regions is maµtly influenced by local variations of slope and exposition.
By means of digital terrain models based on topographie maps, slope and exposition are calculated with the GIS. A combination of these factors enables the creation of maps with many small-scaled areas, each showing specific slope and exposition. From this, numerous larger zones with equal slope and exposition are deduced which receive the same amount of energy.

The calculation of the amount of radiation, especially for the months of ripeness, enables a local climatic zoning and delimitation of areas in Franconia / Germany suitable for viticulture. Based on the climatic classification, the endangering of areas by cold air and frost and the frequency of fog can be also included into this valuation. Proceeding from the local. climatic classification, regions or zones of equal climatic conditions can be clearly determined.

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

S. MICHEL, A. SCHWAB and S. KÖNIGER

Bayerische Landesanstalt für Weinbau und Oartenbau, Abt. Weinbau und Rebenzüchtung, Hennstr. 8, D-97209 Veitshochheim, Germany

Contact the author

Keywords

zonage régional, SIG, classification climatique, topoclimat, gestion des surfaces viticoles
regional zoning, GIS, climatic classification, topoclimate, vineyard management

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

Volatile and phenolic composition of Agiorgitiko wines from eight different areas of PDO Nemea zone

AIM: Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated red grapewine variety in Greece1 located mainly in Nemea region, the largest PDO zone in Greece2. Although Agiorgitiko is considered as one of the most interesting red grape varieties, not only in Greece3, but also at international level4,5, however, there is a lack of knowledge

Irrigation as a tool for heatwave mitigation: the effect of irrigation intensity and timing in Cabernet Sauvignon

Heatwave events, defined as 2 or more days reaching ≥ 38 °C, are an increasingly frequent phenomenon threatening grape production worldwide. Heat stress has been shown to have negative consequences on grapevine physiology, leading to increased evaporative demand and intensified water stress. Due to heatwaves overlapping with important stages of grapevine reproductive development, spanning from berry set to the ripening stage, severe heat can potentially compromise yield and grape quality. The physiological response of grapevine to heat stress suggests a potential use of irrigation to mitigate heatwaves, however there is limited information regarding the irrigation amounts and timings needed for this purpose. Following up on a pivotal trial conducted between 2019 and 2022, in this study irrigation treatments with varying intensity and timing of application were refined to determine their potential mitigation of heat-associated damage to yield and fruit composition.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.