Terroir 1996 banner
IVES 9 IVES Conference Series 9 From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

From local classification to regional zoning-the use of a geographic information system (GIS) in Franconia/Germany. Part 2: regional zoning of vineyards based on local climatic classifications

Abstract

En raison des vanations locales d’exposition et de déclivité, l’évaluation climatique des vignobles et des régions viticoles est très important pour la culture des raisins. De nombreuses informations différentes doivent être réunies et analysées afin de trouver la position optimale pour des cépages avec des périodes de maturité différentes qui ensuite déterminent la région. De nouveaux logiciels, tel qu’un Système d’information Géographique (SlG), permettent d’enregistrer et d’analyser en détail les facteurs importants.
L’un des objectifs d’une application du SIG en Franconie / Allemagne est une classification climatique des vignobles et l’introduction d’un zonage climatique. La somme de la radiation directe se situe au centre de l’évaluation climatique des surfaces viticoles, car elle détermine la quantité de chaleur reçue par une position. Ceci varie avec les conditions de relief, calculées à l’aide d’un modèle de terrain digital sur la base des cartes topographiques. Dans ces conditions, il est possible de cons tituer des cartes d’inclination et d’exposition. On peut en conclure que les zones de même déclivité et d’exposition reçoivent la même insolation.
Le calcul de la somme de radiation, particubèrement pendant les mois de maturité, permet un zonage climatique local et la délimitation des surfaces en Franconie aptes à la viticulture. Sur la base de la classification climatique, la quantité d’air froid, le risque de gel ainsi que la fréquence du brouillard peuvent être inclus dans l’évaluation. Partant de cette évaluation locale du climat, les régions de même clémence de climat peuvent être clairement délimitées.

The climatic valuation of vineyards and viticultural regions in the northern hemisphere bas a high importance for the cultivation of grape varieties with different ripeness development. A large amount of different information have to be compiled and analysed to work out the optimal locations for grape varieties with different ripeness periods within specific areas. New computer software such as a Geographic Information System (GIS) enables the detailed recording and analysis of viticulturally relevant factors.

One of the objectives of the GIS application in Franconia / Germany is the climatic classification of vineyards and the establishment of a climatic zoning. The main aspect of the climatic valuation is the sum of the direct radiation on vineyard sites. The local climate in northern viticultural regions is maµtly influenced by local variations of slope and exposition.
By means of digital terrain models based on topographie maps, slope and exposition are calculated with the GIS. A combination of these factors enables the creation of maps with many small-scaled areas, each showing specific slope and exposition. From this, numerous larger zones with equal slope and exposition are deduced which receive the same amount of energy.

The calculation of the amount of radiation, especially for the months of ripeness, enables a local climatic zoning and delimitation of areas in Franconia / Germany suitable for viticulture. Based on the climatic classification, the endangering of areas by cold air and frost and the frequency of fog can be also included into this valuation. Proceeding from the local. climatic classification, regions or zones of equal climatic conditions can be clearly determined.

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

S. MICHEL, A. SCHWAB and S. KÖNIGER

Bayerische Landesanstalt für Weinbau und Oartenbau, Abt. Weinbau und Rebenzüchtung, Hennstr. 8, D-97209 Veitshochheim, Germany

Contact the author

Keywords

zonage régional, SIG, classification climatique, topoclimat, gestion des surfaces viticoles
regional zoning, GIS, climatic classification, topoclimate, vineyard management

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Advances in phenology modelling of the grapevine

Historical records of grapevine phenology have been collected over decades throughout different winegrowing regions. These records have demonstrated advances in key developmental stages such as budburst, flowering and veraison because of increased temperatures due to climate change.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

The effect of ecological conditions on the germination of pollen, fecundation and yield of some grapevine cultivars in Skopje region, Republic of Macedonia

The ecological conditions (climatic factors and soil) during the whole year, and especially before flowering and during the time of flowering, have a great influence on the functional ability of pollen, the pollination, the fecundation and the yielding potential of the cultivars of grapevine.

Wine tartaric stability based on hydrogel application

Tartrates are salts of tartaric acid that occur naturally in wine and lead to sediments that cause consumers’ rejection. There are currently different treatments to prevent its occurrence, with cold stabilization being the most traditional and well-known method.

Hanseniaspora in wine-making: their genetic modification and potential role in acid modulation

Hanseniaspora spp. are one of the most common yeast isolates in vineyards and wineries and play an important role in wine-making.