Terroir 1996 banner
IVES 9 IVES Conference Series 9 Frost variability in the Champagne vineyard: probability calendar

Frost variability in the Champagne vineyard: probability calendar

Abstract

Dans le vignoble champenois, le risque thermique associé au gel des bourgeons au printemps et en hiver est très mal connu et ne peut être envisagé qu’à l’échelle locale, en raison d’une variabilité spatiale forte. L’objectif de l’étude est d’appréhender ce risque de façon fiable et pluri locale en utilisant le réseau de stations météos récemment implanté. Au démarrage de l’étude (1998), nous ne disposons de données thermiques que depuis 5 ans dans le meilleur des cas. Néanmoins, les données sont recueillies sur plus de 30 sites représentant une grande diversité de situations: bas de coteau, mi-coteau, plaine vallée, plateau etc. Nous disposons par ailleurs de plusieurs sites hors vignoble avec de longues séries (plus de 30 ans).
Dans un premier temps, la méthode consiste à élaborer, sur la période courte de 5 ans, une « Composante Thermique Régionale » ou «C.T.R. », composante principale de la variabilité thermique d’un ensemble de stations hors vignoble, disposant de longues séries (plus de 30 ans). Cette C.T.R. est établie de telle façon que les stations hors vignoble puissent reconstituer avec une très bonne fiabilité leurs propres séries longues à partir des données de la série courte.
Dans un second temps, à partir de la C.T.R. et des séries courtes (Sans), des séries longues « fictives » sont reconstituées pour chaque station vignoble. Des statistiques de fréquences de gel pour différents seuils de température sont ensuite établies.
Le résultat est un calendrier présentant pour chaque site, par décade et de janvier à mai, la probabilité de connaître chaque jour, une gelée en deçà d’un seuil de température choisi.
La méthodologie revêt plusieurs intérêts : une meilleure connaissance des terroirs, l’aide au choix économique d’un système de protection contre les gelées et la perspective d’étendre cette méthodologie à d’autres variables climatiques.

In the Champagne vineyard, the thermal risk corresponding to frost damage of buds in spring and winter is badly known and must be only study at thin scale because of its great spatial variability. The objective of this study is to describe this physical risk with a great reliability on several places of the vineyard, using the recently installed meteorological station network. In the beginning of the study, we have date only for five years in the best case. Nevertheless, these data are collected from more than 30 stations, representing a great number of topographie situations: bottom, middle of hills, plains, valleys, We also have out-of-vineyard stations with long thermal series.
At first, the method consist of establishing the C.R.T (Regional Thermal Component), which is the main component of the thermal variability of a set of several out-of-vineyard stations, having long thermal series (more than 30 years). This C.R.T. is elaborated so as to reconstitute with a good reliability out-of-vineyards stations long thermal series from short thermal series.
At last, virtual long thermal series of vineyard stations are reconstituted from both short thermal series and C.R.T. Then, frequency statistics of thermal risk are established for different temperature levels. This method is interesting for 3 reasons : a better knowledge of our vineyard, selecting easily the most cheaper frost protecting system in each situation and extending perhaps this method to other climate parameters.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

F. LANGELLIER, L. PANIGAI, D. MONCOMBLE (1), M-F. de SAINTIGNON, S. DURANTON (2)

(1) COMITE INTERPROFESSIONNEL DU VIN DE CHAMPAGNE, 5 rue Henri Martin 51200 Epernay
(2) LABORATOIRE DE LA MONTAGNE ALPINE- CNRS – Espace Serge Martin- 2061, rue de la Piscine, Domaine universitaire BP 53- 38041 Grenoble Cedex

Keywords

Vignoble de champagne, gel de printemps, risque thermique, réseau météorologique
Champagne vineyard, spring frost; probability calendar, meteorological network

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Gas chromatography-olfactometry characterization of corvina and corvinone young and aged wines

AIM AND METHODS: Corvina and Corvinone are the two main grape varieties used in the production of Valpolicella, Recioto and Amarone, top-quality red wines in north-eastern Italy. This work aimed at determining the aroma composition of Corvina and Corvinone experimental wines and identify the main aroma compounds contributing to the aroma characteristics of Corvina and Corvinone monovarietal wines. Five Corvina and five Corvinone wines were studied, the grapes coming from five different vineyards in Valpolicella. Volatile compounds were extracted by SPE and identified and quantified by gas chromatography-mass spectrometry (GC-MS), whereas their aroma impact was determined by gas chromatography- olfactometry (GC-O).RESULTS: Based on the GC-MS-O analysis, 95 odor zones were detected, from which 68 compounds were successfully identified. Using the criterion of a value higher than 30% in modified frequency (MF %), 51 compounds were selected and grouped according to odor similarity. Compounds with values below 30% were discarded.

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

Comparison of two procedures to measure foamability from sparkling base wines supplemented with acacia gums

In sparkling wines, foam is a relevant aspect whose measurement method could affect the results. The shaking test (ST) is a simple method measuring foamability1,2