Terroir 1996 banner
IVES 9 IVES Conference Series 9 The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

The sea breeze: a significant climatic factor for viticultural zoning in coastal wine growing areas

Abstract

La brise de mer est un facteur climatique important pour le zonage viticole des régions viticoles côtières car l’accélération du vent qui lui est associée l’après midi ainsi que l’augmentation de l’humidité relative et la réduction de la température concomitantes sont significatives pour le fonctionnement de la vigne et, par conséquent, la qualité du raisin et du vin. Le vent, l’humidité relative et la température sont étudiés à partir de données de surface issues de stations météorologiques automatiques situées dans le vignoble au sud ouest de la région du Cap en Afrique du Sud et de simulations numériques sur l’espace étudié afin, d’évaluer le degré de pénétration de la brise de mer et la “limite” de son influence. Les simulations ont été réalisées avec le Regional Atmospheric Modelling System (RAMS) pour trois conditions synoptiques au cours de la période de maturation: un flux à grande échelle de sud, chaud (3/02/2000), un flux de nord très chaud et sec (18/02/2000) et un flux de nord­-ouest frais et humide (19/02/2000). Les résultats des simulations numériques avec une résolution de 1 km montrent que plus les températures sont élevées, plus la baisse des températures générée par la brise de mer est importante. La brise de mer venant de l’Atlantique (Table Bay) le 18/02/2000 a généré une baisse maximale des températures de 6 °C tandis que cette de la False Bay le 3/02/2000 une baisse maximale de 2 °C dans la région viticole de Stellenbosch. Une baisse maximale de 1 °C seulement a été enregistrée lors d’un jour nuageux (19/02/2000).

The sea breeze is an important climatic factor for viticultural zoning in coastal wine producing areas as the associated increase in wind velocity in the afternoon and concomitant increase in relative humidity and reduction in temperature is of significance for vine functioning and, therefore, grape and wine quality. Wind, relative humidity and temperature were studied with the aid of surface data from automatic weather stations in the South Western Cape wine growing area of South Africa as well as numerical simulations over the study domain in order to ascertain the degree of penetration of the sea breeze and to assess the “limit” of its influence. Simulations were performed using the Regional Atmospheric Modelling System (RAMS) for three synoptic conditions during the grape maturation period: a southerly large-scale flow associated with warm temperature (3/02/2000), a northerly large­scale flow associated with hot and dry conditions (18/02/2000) and north-westerly large-scale flow associated with cool and humid conditions (19/02/2000). Results of the numerical simulations performed at a 1-km resolution showed that the warmer the temperature, the greater the temperature decrease induced by the sea breeze. The sea breeze originating from the Atlantic (Table Bay) on 18/02/2000 generated a maximum temperature decrease of
6 °C, while that originating from False Bay on 3/02/2000 generated a maximum temperature decrease of 2 °C in the Stellenbosçh wine producing area. A maximum temperature decrease of only 1 °C was recorded on an overcast day (19/02/2000).

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

V. BONNARDOT

ARC Institute for Soil, Climate and Water, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Atmospheric modelling, sea breeze, wine-producing area, South Africa, ripening period

Modélisation atmosphérique, brise de mer, région viticole, Afrique du Sud, période de maturation

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

Influence of cork density upon cork stopper resiliency after opening a sparkling wine bottle

After Champagne popping, the first consumer’s observation is the shape of the cork stopper. Consumers expect a “mushroom shape”. Nevertheless, we sometimes observe a “barrel” shape due to inappropriate cork’s elastic properties. The aim of this study was to follow the loss of cork stopper resiliency during 26 months according to the density (d) of the cork in contact with the wine. 1680 disks were weighed + measured and divided in 6 density classes: High (H1 d= 0,19 g/cm3 – H2 d= 0,21 g/cm3), Medium (M, not studied) and Low (L1 d= 0,13 g/cm3 – L2 d= 0,14 g/cm3). Then, 138 technical cork stoppers were produced for each of the 4 studied groups. These corks consisted of an agglomerated natural cork granule body to which two natural cork disks were glued. A total of 552 bottles of sparkling wine were closed with these corks and open after 13, 19 and 26 months to follow cork resiliencies. Wine bottles were stored horizontally; thus, the external natural cork disks were in contact to the wine. During the 26 months of the study, highly significant differences (ANOVA) were observed between the resiliencies of H-corks and those of L-corks, whatever the time studied. The diameters of the L-corks were statistically higher than those of the H-corks. No significant differences were observed between L1 and L2 corks. At the opposite, differences were noted between H1 and H2 at 19 and 26 months. This could be explained by the heterogeneity of the resiliency that was higher for H-corks than for L-corks. Finally, the corks were visually (12 judges) divided in 3 classes corresponding to high (expected mushroom shape, i.e high resiliency), medium (irregular shape of the disk in contact with the wine and/or low premature deterioration of the expected resiliency) and low qualities (barrel shape = premature deterioration of the resiliency). The corks were also divided in 3 categories corresponding to 0-33%, 34-66% and 67-100% resiliency. A strong correlation was noted between the visual and the instrumental categorizations. This study strongly evidenced 1) the importance of the cork density on the cork stopper behaviour when opening the bottle and 2) the interest of an instrumental approach reflecting the consumer’s perception.

Recovery of olfactory capacity following a COVID-19 infection

In this video recording of the IVES science meeting 2021, Sophie Tempère (Institut des Sciences de la Vigne et du Vin – ISVV, Université de Bordeaux) speaks about the recovery of olfactory capacity following a COVID-19 infection. This presentation is based on an original article accessible for free on IVES Technical Reviews.

How sensor technologies combined with artificial intelligence increase the efficiency in grapevine breeding (research): current developments and future perspectives

Viticulture and grapevine breeding programs have to face and adapt to the rapidly changing growing conditions due to the ongoing climate change, the scarcity of resources and the demand for sustainability within the whole value chain of wine production. In times of highly effective and cost-efficient genotyping technologies routinely applied in plant research and breeding, the need for comparable high-speed and high-resolution phenotyping tools has increased substantially. The disciplines of grapevine research, breeding and precision viticulture picked up this demand – mostly independent from each other – by the development, validation and establishment of different sensor technologies in order to extend management strategies or to transform labor-intensive and expensive phenotyping.