Macrowine 2021
IVES 9 IVES Conference Series 9 Adsorption capacity of phenolics compounds by polyaniline materials in model solution

Adsorption capacity of phenolics compounds by polyaniline materials in model solution


AIM: The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions.

METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications. The synthesis and characterization of polyaniline emeraldine base (PANI-EB) and different PANI 50, 100, 150 (polyaniline-PVPP composites where 50, 100, 150 are amount of PVPP) was prepared according to what was reported by Marican et al. (2014). Once the selected contact times were over, the samples were filtered and were by HPLC-DAD, following the methodology described by Gómez-Alonso et al. (2007). In brief, the separation was performed using a reverse-phased LiChrosorb® RP-18 (5 μm) column (250 mm × 4 mm ID) operating at 20 ºC. The injection volume was 25 μL, and for detection and quantification of compounds, the chromatograms were recorded at 280, 320 and 360 nm.

RESULTS: Regardless of the polymer used, the compounds having more affinity for PANI were gallic and caffeic acid, whereas rutin and (+)-catechin were the least removed. For instance, the adsorption percentage of gallic and caffeic acid, with a 4 g/L PANI concentration and 8 h of contact time, reached more than 90% whereas the removal of rutin was lower than 40%. Instead, the phenolic concertation of the samples where no polymer was added (0 g/L of PANI) remain stable over time, very close to 50 mg /L for each of the phenols evaluated. As expected, the concentration of the five phenols decreased as the contact time increased. As an example, a 2 g/L addition of PANI 50 produced a reduction of (-)-epicatechin concentration of 17 mg/L after 8 h of contact time and 25 mg/L after 24 h. Like so, the decrease in the concentration of all phenols was greater when more polymer was added.

CONCLUSIONS: The results obtained suggest that PANI Polymers could be an interesting alternative for analytical or experimental applications in which polyphenolcs need to be removed.


Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article



Talca University

Contact the author


pani polymers, phenols, model wine solutions


Related articles…

Crop load management of newly planted Pinot gris grown in warm climate of California

San Joaquin Valley accounts for 68% of Pinot gris acreage and produces 83% of Pinot gris wine in California. Strong demand for Pinot gris has prompted growers to restrict the nonbearing period

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.

Contribution of Electrical Resistivity Tomography (ERT) measurements for characterizing hydrological behaviour of an experimental plot in relation to pedo-geological factors (AOC Gaillac, SW France)

Electrical Resistivity Tomography (ERT) measurements have been performed by the Wenner method on an experimental plot situated in Gaillac region.


In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

Exploring relationships among grapevine chemical and physiological parameters and mycobiome composition under drought stress

Improving our knowledge on biotic and abiotic factors that influence the composition of the grapevine mycobiome is of great agricultural significance, due to potential effects on plant health, productivity, and wine characteristics. Among the various environmental factors affecting the morphological, physiological, biochemical and molecular attributes of grapevine, drought stress is one of the most severe, becoming increasingly an issue worldwide.