Macrowine 2021
IVES 9 IVES Conference Series 9 Adsorption capacity of phenolics compounds by polyaniline materials in model solution

Adsorption capacity of phenolics compounds by polyaniline materials in model solution

Abstract

AIM: The aim of this work was to study the trapping capacity of four polyaniline polymers towards phenolic compounds in wine-like model solutions.

METHODS: The model wine solution was composed of 12% (v/v) and 4 g/L of tartaric acid adjusted to pH = 3.6. A series of centrifuge tubes (15 mL) were filled with 10 mL of model solution enriched with 50 mg/L of five phenolic compounds (i.e., Gallic acid, caffeic acid, (+)-catechin, (-)-epicatechin, and rutin), and treated with different doses of PANI polymer (i.e., 0, 2, 4 and 8 g/L). After the addition of the polymer, the samples were stirred using a platform shaker at room temperature (20 ºC) for 2, 8, 16 and 24 h. All treatments included three replications. The synthesis and characterization of polyaniline emeraldine base (PANI-EB) and different PANI 50, 100, 150 (polyaniline-PVPP composites where 50, 100, 150 are amount of PVPP) was prepared according to what was reported by Marican et al. (2014). Once the selected contact times were over, the samples were filtered and were by HPLC-DAD, following the methodology described by Gómez-Alonso et al. (2007). In brief, the separation was performed using a reverse-phased LiChrosorb® RP-18 (5 μm) column (250 mm × 4 mm ID) operating at 20 ºC. The injection volume was 25 μL, and for detection and quantification of compounds, the chromatograms were recorded at 280, 320 and 360 nm.

RESULTS: Regardless of the polymer used, the compounds having more affinity for PANI were gallic and caffeic acid, whereas rutin and (+)-catechin were the least removed. For instance, the adsorption percentage of gallic and caffeic acid, with a 4 g/L PANI concentration and 8 h of contact time, reached more than 90% whereas the removal of rutin was lower than 40%. Instead, the phenolic concertation of the samples where no polymer was added (0 g/L of PANI) remain stable over time, very close to 50 mg /L for each of the phenols evaluated. As expected, the concentration of the five phenols decreased as the contact time increased. As an example, a 2 g/L addition of PANI 50 produced a reduction of (-)-epicatechin concentration of 17 mg/L after 8 h of contact time and 25 mg/L after 24 h. Like so, the decrease in the concentration of all phenols was greater when more polymer was added.

CONCLUSIONS: The results obtained suggest that PANI Polymers could be an interesting alternative for analytical or experimental applications in which polyphenolcs need to be removed.

DOI:

Publication date: September 28, 2021

Issue: Macrowine 2021

Type: Article

Authors

María Navarro, JOHN AMALRAJ, V. FELIPE LAURIE

Talca University

Contact the author

Keywords

pani polymers, phenols, model wine solutions

Citation

Related articles…

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Interacción mesoclima-suelo en la calidad del vino de Cabernet-Sauvignon en las denominaciones de origen Priorato y Tarragona

Las condiciones heliotérmicas en España son en general favorables a alcanzar una elevada producción de azúcares en las bayas de prácticamente todas las variedades que se cultivan en nuestro país.

Enhancing Monastrell wine quality in a climate change scenario: the role of cation exchange resins in addressing acidity challenges

Climate change significantly impacts vine and grape physiology, leading to changes in wine composition, including reduced titratable acidity, elevated ethanol content, and higher pH levels [1].

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves.

The FEM grapevine breeding program: new registered varieties (mid-)resistant to the main ampelopathies

“Vinum debet esse naturale ex genimine vitis et non corruptum”. The Eucharistic wine must be made with pure grapes that must not be contaminated in any way. This is how wine was born in the monastery of the Augustinians, and that is how the genetic improvement of grapevine implemented over the decades at the Agricultural Institute of San Michele all’Adige (since 1874; Trentino – Italy) has been oriented to make the cultivation of grapes always more sustainable. This concept is still current and meets the worldwide urgent need of reducing the use of chemicals, under a climate crisis scenario. Since the beginning of the twentieth century, the varieties introduced in Trentino and the new cultivars produced by pioneer breeders have already embraced the principle of sustainable viticulture.