Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Abstract

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études. La délimitation de l’unité de terroir dite «fonctionnelle» se distingue de celles issues de diverses méthodes de cartographie informatisée, parmi lesquelles la méthode dite de «zonage des terroirs par l’analyse spatiale» objet de cette communication. Fondé sur l’analyse géomorphologique et pédologique du milieu physique en unités de pédopaysage, puis sur des regroupements de ces unités à l’aide de classifications statistiques, le zonage des terroirs par l’analyse spatiale repose sur l’interprétation de données de terrain et de photographies aériennes, ainsi que sur des traitements numériques d’images satellitales. Il a été mis en œuvre pour le vignoble AOC des Côtes-du-Rhône méridionales, couvrant 210 800 ha de territoires communaux, dont 60 000 plantés en vigne. Au moins 60 % des unités de terroir disposant de données de maturité 1982-1998 du Grenache et de la Syrah sont respectivement validées au moyen de l’analyse fréquentielle de ces données.

Spatial approaches on terroir as a geographical entity (“zoning”) are being developed, together with the steady rising of GIS data handling. Studies greatly differ in methods, objectives and the selected criteria. The delineation of so-called “functional” units has to be distinguished from varied digital mapping methods, such as the so-called “zoning of terroirs based on spatial analysis”, which is presented in this paper. Relying on the soil and landform analysis of the geographic space into soil-landscape units, which are clustered using statistical classifications, such zoning uses ground observations, aerial photograph examination, and also digital processing of satellite images. It was carried out in the Southern Côtes-du-Rhône Appelation vineyard, over 210 800 hectares, 60 000 of which planted with vines. At least 60 % of those of the modelled terroir units having harvest data are validated as for their viticultural response, across successive harvests of Grenache or Shiraz grapes in quality-clusters over the 1982-1998 vintages.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E.VAUDOUR (1), M.C. GIRARD (1), F. FABRE (2)

(1) Institut National Agronomique Paris-Grignon (INA-PG) -UFR AGER/DMOS -Centre de Grignon BP01 78850 Thiverval-Grignon-France
(2) Syndicat des Vignerons des Côtes-du-Rhône-Maison des Vins -6, rue des Trois Faucons -84000 Avignon -France

Contact the author

Keywords

zonage viticole, terroir, analyse spatiale géomorpho-pédologique
viticultural zoning, terroir, soil and landform spatial analysis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

FOURIER TRANSFORM INFRARED SPECTROSCOPY IN MONITORING THE WINE PRODUCTION

The complexity of the wine matrix makes the monitoring of the winemaking process crucial. Fourier Transform Infrared Spectroscopy (FTIR) along with chemometrics is considered an effective analytical tool combining good accuracy, robustness, high sample throughput, and “green character”. Portable and non-portable FTIR devices are already used by the wine industry for routine analysis. However, the analytical calibrations need to be enriched, and some others are still waiting to be thoroughly developed.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

A combination of biotechnology tools and coopers elements for an alternative the addition of SO2 at the end of the malolactic fermentation in red wines or at the “mutage” for the “liquoreux” wines

In red wines the post-MLF SO2 addition is an essential event. It is also the case for the “mutage” during the elaboration of the “liquoreux”. At these moments SO2 plays an antimicrobial action and an antioxidant effect. But at current pH of wines, ensuring a powerful molecular SO2 has become very difficult. Recent work on Brettanomyces strains have also shown that some strains are resistant up to 1.2 mg / L of molecular SO2. It’s also the case of the some Saccharomuces or Zygosaccharomyces strains suitable to re-ferment “liquoreux” wines after the “mutage”.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).