Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Abstract

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études. La délimitation de l’unité de terroir dite «fonctionnelle» se distingue de celles issues de diverses méthodes de cartographie informatisée, parmi lesquelles la méthode dite de «zonage des terroirs par l’analyse spatiale» objet de cette communication. Fondé sur l’analyse géomorphologique et pédologique du milieu physique en unités de pédopaysage, puis sur des regroupements de ces unités à l’aide de classifications statistiques, le zonage des terroirs par l’analyse spatiale repose sur l’interprétation de données de terrain et de photographies aériennes, ainsi que sur des traitements numériques d’images satellitales. Il a été mis en œuvre pour le vignoble AOC des Côtes-du-Rhône méridionales, couvrant 210 800 ha de territoires communaux, dont 60 000 plantés en vigne. Au moins 60 % des unités de terroir disposant de données de maturité 1982-1998 du Grenache et de la Syrah sont respectivement validées au moyen de l’analyse fréquentielle de ces données.

Spatial approaches on terroir as a geographical entity (“zoning”) are being developed, together with the steady rising of GIS data handling. Studies greatly differ in methods, objectives and the selected criteria. The delineation of so-called “functional” units has to be distinguished from varied digital mapping methods, such as the so-called “zoning of terroirs based on spatial analysis”, which is presented in this paper. Relying on the soil and landform analysis of the geographic space into soil-landscape units, which are clustered using statistical classifications, such zoning uses ground observations, aerial photograph examination, and also digital processing of satellite images. It was carried out in the Southern Côtes-du-Rhône Appelation vineyard, over 210 800 hectares, 60 000 of which planted with vines. At least 60 % of those of the modelled terroir units having harvest data are validated as for their viticultural response, across successive harvests of Grenache or Shiraz grapes in quality-clusters over the 1982-1998 vintages.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E.VAUDOUR (1), M.C. GIRARD (1), F. FABRE (2)

(1) Institut National Agronomique Paris-Grignon (INA-PG) -UFR AGER/DMOS -Centre de Grignon BP01 78850 Thiverval-Grignon-France
(2) Syndicat des Vignerons des Côtes-du-Rhône-Maison des Vins -6, rue des Trois Faucons -84000 Avignon -France

Contact the author

Keywords

zonage viticole, terroir, analyse spatiale géomorpho-pédologique
viticultural zoning, terroir, soil and landform spatial analysis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Effect of rising atmospheric CO2 levels on grapevine yield and composition by the middle of the 21st century: what can we learn from the VineyardFACE?

Atmospheric CO2 levels have been rising continuously since the industrial revolution, affecting crop physiology, yield and quality of harvest products, and grapevine is no exception [1]. Most of previously reported studies used potted plants in controlled environments, and explored grapevine response to relatively high CO2 levels, 700 ppm or more. The vineyardFACE, established in Geisenheim in 2012, uses a free air carbon dioxide enrichment (FACE) system to simulate a moderate (ambient +20%) increase in atmospheric CO2 in a vineyard planted with cvs. Cabernet-Sauvignon and Riesling grafted on rootstock 161-49 Couderc and SO4, respectively.

DETERMINATION OF MINERAL COMPOSITION IN CV. TERAN (VITIS VINIFERA L.) RED WINE AFFECTED BY PRE-FERMENTATIVE MASH COOLING, HEATING, SAIGNÉE TECHNIQUE AND PROLONGED POST-FERMENTATIVE MACERATIONS

This study aimed to determine mineral composition in red wine obtained from cv. Teran (Vitis vinifera L.), autochtonous Croatian grape variety. Six different vinification treatments, including the control treatment (7-day standard maceration), were performed to study the effects of: 48-hour pre-fermentative mash cooling (8 °C) followed by prolonged post-fermentative maceration of 13 days (C15), 28 days (C30), and saignée technique (juice runoff) proceeded with prolonged post-fermentative maceration of 13 days (CS15); and effect of 48-hour heating (50 °C) followed by prolonged post-fermentative maceration of 13 days (H15) and 28 days (H30) on macro- and microelements in wine.

Effects of a new vacuum evaporation method on chemical and sensory properties of must and wine

A new process for vacuum evaporation was developed where evaporation takes place near the inner surface of a vortex produced by a rotor submerged in the liquid. Contrary to the state of the art the Vortex rotor process does not need a vacuum vessel but the rotating liquid creates a geometrically stable low pressure void surrounded by a vortex stabilized by the equilibrium between centrifugal forces and the pressure difference. First tests with water and sugar solutions at concentrations similar to grape must were conducted to verify the theoretical predictions, test the performance under different conditions and study the effect of various process parameters (Rösti et al 2015).

Wines produces without SO2 addition: which impact on their colour? An approach at the global and pigments levels

Since the 18th century, sulfur dioxide (SO2) is used in winemaking. Added at different steps, its antimicrobial but also antioxidasic and antioxidant properties are very helpful for winemakers. Nevertheless sulfur dioxide has a real potential health impact, particularly for sensitive consumers often highlighted by hygienists. Nowadays, a serious trend for “natural” wines (i.e. produced without any additives), as described by their producers, could be observed on the French market what match with a proliferation of wines elaborated without any sulfite addition.