Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Abstract

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études. La délimitation de l’unité de terroir dite «fonctionnelle» se distingue de celles issues de diverses méthodes de cartographie informatisée, parmi lesquelles la méthode dite de «zonage des terroirs par l’analyse spatiale» objet de cette communication. Fondé sur l’analyse géomorphologique et pédologique du milieu physique en unités de pédopaysage, puis sur des regroupements de ces unités à l’aide de classifications statistiques, le zonage des terroirs par l’analyse spatiale repose sur l’interprétation de données de terrain et de photographies aériennes, ainsi que sur des traitements numériques d’images satellitales. Il a été mis en œuvre pour le vignoble AOC des Côtes-du-Rhône méridionales, couvrant 210 800 ha de territoires communaux, dont 60 000 plantés en vigne. Au moins 60 % des unités de terroir disposant de données de maturité 1982-1998 du Grenache et de la Syrah sont respectivement validées au moyen de l’analyse fréquentielle de ces données.

Spatial approaches on terroir as a geographical entity (“zoning”) are being developed, together with the steady rising of GIS data handling. Studies greatly differ in methods, objectives and the selected criteria. The delineation of so-called “functional” units has to be distinguished from varied digital mapping methods, such as the so-called “zoning of terroirs based on spatial analysis”, which is presented in this paper. Relying on the soil and landform analysis of the geographic space into soil-landscape units, which are clustered using statistical classifications, such zoning uses ground observations, aerial photograph examination, and also digital processing of satellite images. It was carried out in the Southern Côtes-du-Rhône Appelation vineyard, over 210 800 hectares, 60 000 of which planted with vines. At least 60 % of those of the modelled terroir units having harvest data are validated as for their viticultural response, across successive harvests of Grenache or Shiraz grapes in quality-clusters over the 1982-1998 vintages.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E.VAUDOUR (1), M.C. GIRARD (1), F. FABRE (2)

(1) Institut National Agronomique Paris-Grignon (INA-PG) -UFR AGER/DMOS -Centre de Grignon BP01 78850 Thiverval-Grignon-France
(2) Syndicat des Vignerons des Côtes-du-Rhône-Maison des Vins -6, rue des Trois Faucons -84000 Avignon -France

Contact the author

Keywords

zonage viticole, terroir, analyse spatiale géomorpho-pédologique
viticultural zoning, terroir, soil and landform spatial analysis

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Non-linear unmixing as an innovative tool to detect vine diseases in UAVs, airborned and satellite images: preliminary results

Vine diseases have a strong impact on vineyards sustainability, which in turns leads to strong economic consequences. Among those diseases, Flavescence dorée spreads quickly and is incurable, which led in France to the setup of a mandatory pest control implying the systematic use of pesticides and the prospection and uprooting of every infected plants. Remote sensing could be a very powerful tool to optimize prospection as it allows to produce quickly accurate maps over large areas. Recent studies have shown that high spatial resolution (10cm/pixel) multispectral images acquired from UAVs allow to map Flavescence dorée in vineyards using leaves discolorations [e.g. Albetis et al., Remote Sensing, 2017].

Impact of smoke exposure on the chemical composition of grapes

Vineyard exposure to smoke can lead to grapes and wine which exhibit objectionable smoky and ashy aromas and flavours, more commonly known as ‘smoke taint’ [1, 2]. In the last decade, significant bushfires have occurred around the world, including near wine regions in Australia, Canada, South Africa and the USA, as a consequence of the warmer, drier conditions associated with climate change. Considerable research has subsequently been undertaken to determine the chemical, sensory and physiological consequences of grapevine exposure to smoke. The sensory attributes associated with smoke-tainted wine have been linked to the presence of several smoke-derived volatile phenols, such as guaiacols, syringols and cresols [2].

Cell Walls Of Grape Mesocarp Possible Fining Agents For Red And White Wine

Clarification or fining of wines is a technique used in wineries to eliminate unwanted wine components, which negatively affect its quality. Clarification normally involves the addition of an adsorptive material that eliminates or reduces the presence of undesirable components. The problem is that many of the fining agents used in the industry contain allergens, such as caseinates or ovalbumin.

Evaluation of Polarized Projective Mapping as a possible tool for attributing South African Chenin blanc dry wine styles

Multiple Factor Analysis (MFA) According to the Chenin blanc Association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded (RRU), and Rich and Ripe Wooded (RRW), classically attributed with the help of sensory evaluation. One of the “rapid methods” has drawn our attention for the purpose of simplifying and making style attribution for large sample sets, evaluated during different sessions, more robust. Polarized Projective Mapping (PPM) is a hybrid of Projective Mapping (PM) and Polarised Sensory Positioning (PSP). It is a reference-based method in which poles
(references) are used for the evaluation of similarities and dissimilarities between samples.

Grapevine gas exchange responses to combined variations of leaf water, nitrogen and carbon status – a case of study of fungi tolerant varieties

In the context of climate change and the need to reduce inputs, optimising photosynthesis and grapevine performance requires a better understanding of the interactions between water status, nitrogen availability, and source-sink relationships.