Terroir 1996 banner
IVES 9 IVES Conference Series 9 The influence of the soil on the phenolic composition of both grapes and wines : “the Grenache observatory”

The influence of the soil on the phenolic composition of both grapes and wines : “the Grenache observatory”

Abstract

[English version below]

La composition fine des raisins de Grenache noir est mal connue. Il est généralement admis une certaine variabilité de comportement de ce cépage qui se manifeste principalement sur la couleur des vins. De nombreux facteurs peuvent être à l’origine de cette variabilité : matériel végétal, pratiques culturales, types de vinification et terroir. Un travail de recherche concernant ce cépage a été engagé dans la Vallée du Rhône. L’étude a pour but de juger le comportement de ce cépage dans différentes situations pédoclimatiques. La couleur et les tanins des raisins et des vins issus des différents terroirs caractéristiques de la Vallée du Rhône sont analysés. L’utilisation de techniques analytiques performantes (C.L.H.P.) nous permet d’étudier dans le détail la composition anthocyanique des vins. Cette communication fait état des résultats relatifs à la couleur et aux tanins (analyses en spectrophotométrie UV-Visible) des raisins issus de douze parcelles du dispositif « Observatoire Grenache » sur quatre millésimes consécutifs. Cette étude nous a permis de mettre en évidence l’influence des millésimes sur les teneurs en anthocyanes (de 0.5 à 1.3 g/kg) et en tanins (de 6.2 à 11.5 g/kg), mais surtout l’impact du «terroir» sur les concentrations totales en polyphénols des raisins. La caractérisation fine, par Chromatographie Liquide Haute Performance, des vins correspondants confirme l’analyse des raisins, montrant également de fortes variations de la quantité globale en anthocyanes. Par contre, la nature et la structure des 7 anthocyanes dosées semblent peu affectées par le millésime et l’effet terroir. Le «profil anthocyanique » ainsi obtenu sur les vins reste caractéristique du cépage Grenache noir, quel que soit le millésime ou le terroir.

The detailed composition of the Grenache vine variety is not well known. A slight variability in the nature of this vine variety is generally accepted which principally appears on the color of the wine. Many factors can be the source of this variability like the vegetal material, the growing cultural practices, the type of winemaking and soil. A research work concerning this vine variety has started in the Rhône Valley. The purpose of this study is to evaluate the vine variety behavior placed in various pedoclimatic conditions. The color and the tannins of both wines and grapes, from various characteristic soils of the Rhône Valley, are analyzed. The use of performing analytical technics (H.P.L.C.) provides us a way to study with great detail the anthocyanic composition of the wines. This presentation states results associated with the color and the tannins (UV-visible spectrophotometry analysis) of grapes, coming from twelve lots of the “Grenache Observatory” over four consecutive vintages. Thanks to this study, we were able to point out the influence of the vintage on the concentration of both anthocyanins (from 0.5 to 1.3 g/kg) and tannins (from 6.2 to 11.5 g/kg) and even more, it showed the impact of the soil on the total polyphenol concentration of the grape. A detailed analysis by High Performance Liquid Chromatography, of the corresponding wines, confirms the grapes analysis, which shows consequent variation of the global anthocyanin quantity. However, the nature and the structure of the 7 analyzed anthocyanins do not seem to be significantly dependent on either the vintage or the soil. The obtained anthocyanic profile of the wines still remains specific to the black grenache vine variety and it does not depend on the vintage or the soil.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

PUECH C. (1), ORMIERES J-F. (1), SIPP C. (2), JACQUET O. (3), RIOU C. (1)

(1) Service Technique d’Inter Rhône
(2) Syndicat Général des Vignerons Réunis des Côtes du Rhône
(3) Chambre d’ Agriculture du Vaucluse – Institut Rhodanien, 2260 Route du Grès, 84000 Orange, France

Contact the author

Keywords

terroir, anthocyanes, tanins, Grenache noir
soil, anthocyanins, tannins, Grenache

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

NEW INSIGHTS INTO THE FATE OF MARKERS INVOLVED IN FRESH MUSHROOM OFF-FLAVOURS DURING ALCOHOLIC FERMENTATION

The fresh mushroom off-flavour (FMOff) has been appearing in wines since the 2000s. Some C8 compounds such as 1-octen-3-one, 1-octen-3-ol, 1-hydroxyoctan-3-one, 3-octanol and others are involved in this specific off-flavour [1-3]. At the same time, glycosidic precursors of some FMOff compounds have been identified in musts contaminated by Crustomyces subabruptus [4], highlighting the role of aroma precursors in this specific taint. However, the fate of these volatile molecules and glycosidic fractions during fermentation is not well known.

Polyphenol targeted and untargeted metabolomics on rosé wines : impact of protein fining on polyphenolic composition and color

Color is one of the key elements in the marketing of rosé wines[1]. Their broad range of color is due to the presence of red pigments (i.e. anthocyanins and their derivatives) and yellow pigments, likely including polyphenol oxidation products. Clarifying agents are widely used in the winemaking industry to enhance wine stability and to modulate wine color by binding and precipitating polyphenols[2]. During this study, the impact of four different fining agents (i.e. two vegetal proteins, potatoe and pea proteins, an animal protein, casein, and a synthetic polymer, polyvinylpolypyrrolidone, PVPP) on Syrah Rose wine color and phenolic composition (especially pigments) was investigated. Color was characterized by spectrophotometry analysis using the CIELab system in addition to absorbance data. Fining using PVPP had the highest impact on redness (a*) and lightness (L*) parameters, whereas patatin strongly reduced the yellow component (b*) of the wine color. In parallel, the concentration of 125 phenolic compounds including 85 anthocyanins and derived pigments was determined by Ultra High Performance Liquid Chromatography coupled to elestrospray ionisaion triple-quadrupole Mass Spectrometry (UHPLC-QqQ-ESI-MS) in the Multiple Reaction Monitoring mode[3] .

Maturità fenolica e cellulare come metodo di valutazione dell’interazione vitigno-ambiente: il caso del Cabernet-Sauvignon

ln the current work, phenolic and cellular maturation curves were used to assess the degree of adaptation of the cultivar Cabernet sauvignon to the sites under esamination. Five wine­-producing zones with different pedoclimatic characteristics and latitudes were considered (Marche, Toscana, Emilia, Friuli and Slovenia).

Design of an indicator of vine vigor potential conferred by soil (vipos), using a fuzzy expert system

Winegrowers must adapt more and more their viticultural practices in order to evolve toward a sustainable viticulture, to be competitive and to improve both the production methods and the quality and typicalness of wines. In this context, ‘Terroir’ studies in Loire Valley vineyards have allowed to build decision aid maps that can be used directly by growers to adjust their practices.

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.