terclim by ICS banner
IVES 9 IVES Conference Series 9 Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Microbial ecosystems in wineries – molecular interactions between species and modelling of population dynamics

Abstract

Microbial ecosystems are primary drivers of viticultural, oenological and other cellar-related processes such as wastewater treatment. Metagenomic datasets have broadly mapped the vast microbial species diversity of many of the relevant ecological niches within the broader wine environment, from vineyard soils to plants and grapes to fermentation. The data highlight that species identities and diversity significantly impact agronomic performance of vineyards as well as wine quality, but the complexity of these systems and of microbial growth dynamics has defeated attempts to offer actionable tools to guide or predict specific outcomes of ecosystem-based interventions. The application of such tools in future will depend on our understanding of the physiological and molecular drivers that govern microbial ecosystems. Here we describe several integrated approaches to characterize the molecular interactions between species within the fermentation and the waste-water ecosystem and to model the development of these ecosystems. Binary (two species) and consortia-based approaches indicate ecosystem-specific developmental patterns in these systems. On a molecular level, data strongly support that cell-wall related properties of yeast species impact the development of fermentation ecosystems during wine making and highlight the importance of physical contacts between species in these ecological processes. To model the wine yeast fermentation ecosystem, high-throughput flow cytometry-based approaches were developed, and specific models based on a machine-learning approach were developed. In winery wastewater, laboratory-based evolution of two species exposed to biotic selection pressure in a synthetic environment, Saccharomyces cerevisiae and the microalga Chlorella sorokiniana, identified two specific genes involved in carbon and nitrogen catabolite repression that facilitate mutualistic behaviors between yeast and microalgae when inactive. Taken together the data suggest novel strategies for microbial ecosystem-based decision making in wine making and improved integration of natural microbial biodiversity in the process.

DOI:

Publication date: February 11, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Florian F. Bauer, Cleo Conacher, Jennifer Oosthuizen, Georgia Strydom, Evodia Setati, Rene Naidoo-Blassoples

South African Grape and Wine Research Institute, Department of Viticulture and Oenology, Stellenbosch University, Stellenbosch, South Africa

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

OENOLOGICAL POTENTIAL OF AUTOCHTHONOUS SACCHAROMYCES CEREVISIAE STRAINS AND THEIR EFFECT ON THE PRODUCTION OF TYPICAL SAVATIANO WINES

Due to the global demand for terroir wines, the winemaking industry has focused attention on exploiting the local yeast microflora of each wine growing region to express the regional character and enhance the sensory profile of wines such as varietal typicity and aroma complexity. The objective of the present study was to isolate and compare the indigenous strains of Saccharomyces cerevisiae present in different vineyards in the Mesogeia – Attiki wine region (Greece), evaluate their impact on chemical composition and sensory profile of Savatiano wines and select the most suitable ones for winemaking process.

PAIRING WINE AND STOPPER: AN OLD ISSUE WITH NEW ACHIEVEMENTS

The sensory characteristics of wine are a topic studied by several researchers over time, but it continues to be a current and challenging subject. These characteristics are fundamental for the consumer acceptability, which has increasingly aroused their interest to modulate them in line with current market trends and innovation demands. The wine physical-chemical and sensory properties depend on a wide set of factors: they begin to be designed in the vineyard and are later constructed during the various stages of winemaking. Afterwards, the wine is placed in bottles and stored or commercialized.

FLOW CYTOMETRY, A POWERFUL AND SUSTAINABLE METHOD WITH MULTIPLE APPLICATIONS IN ENOLOGY

Flow cytometry (FCM) is a powerful technique allowing the detection, characterization and quantification of microbial populations in different fields of application (medical environment, food industry, enology, etc.). Depending on the fluorescent markers and specific probes used, FCM provides information on the physiological state of the cell and allows the quantification of a microorganism of interest within a mixed population. For 15 years, the enological sector has shown growing interest in this technique, which is now used to determine the populations present (of interest or spoilage) and the physiological state of microorganisms at the different stages of winemaking.

THE EFFECT OF COPPER ON THE PRODUCTION OF VARIETAL THIOLS DURING THE ALCOHOLIC FERMENTATION OF COLOMBARD AND GROS MANSENG GRAPE JUICES

Nowadays, the rapid growth of vineyards with organic practices and the use of copper as the only fun-gicide against downy mildew raises again the question of the effect of copper on varietal thiols in wine, especially 3-sulfanylhexan-1-ol (3SH) and its acetate (3SHA). A few decades ago, several works indicated that the use of copper in the vineyard had a negative effect on the content of varietal thiols in Sauvignon blanc wines [1, 2]. However, these studies only considered the concentration of the reduced form (RSH) of varietal thiols, without quantifying the oxidised ones. For this purpose, we proposed to monitor both reduced and oxidised forms of varietal thiols in wine under copper stress during alcoholic fermentation to have a more complete picture of the biological and chemical mechanisms.

CHANGES IN METABOLIC FLUXES UNDER LOW PH GROWTH CONDITIONS: CAN THE SLOWDOWN OF CITRATE CONSUMPTION IMPROVE OENOCOCCUS OENI ACID-TOLERANCE?

Oenococcus oeni is the main Lactic Acid Bacteria responsible for malolactic fermentation, converting malic acid into lactic acid and carbon dioxide in wines. Following the alcoholic fermentation, this second fermentation ensures a deacidification and remains essential for the release of aromatic notes and the improvement of microbial stability in many wines. Nevertheless, wine is a harsh environment for microbial growth, especially because of its low pH (between 2.9 and 3.6 depending on the type of wine) and nutrient deficiency. In order to maintain homeostasis and ensure viability, O. oeni possesses different cellular mechanisms including organic acid metabolisms which represent also the major pathway to synthetize energy in wine.