Terroir 1996 banner
IVES 9 IVES Conference Series 9 Valorisation of integrated research on vineyard soils. Adaptation to the Val de Loire vineyard

Valorisation of integrated research on vineyard soils. Adaptation to the Val de Loire vineyard

Abstract

[English version below]

La mise en valeur d’un terroir au travers du vin signifie dans un premier temps le respect du cahier des charges de l’A.O.C correspondante. Dans un second temps, elle sous-entend d’être à l’écoute des évolutions scientifiques, techniques et sociétales afin de satisfaire une production plus respectueuse de l’environnement et de la santé des hommes. Les recherches effectuées par l’Unité Vigne et Vin du centre INRA d’Angers ont débouché sur le concept d’UTB, Unité Terroir de Base (R.Morlat). UTB définit une aire de terrain ou le fonctionnement de la vigne est homogène en tous points. En Anjou, un modèle de terrain «roche, altération, altérite» basé sur la profondeur de sol et le degré d’altération de la roche mère a été mis en évidence. Le premier axe du travail présenté est une tentative de classement des principaux types de sols du Val de Loire pour lesquels la vigne a un comportement physiologique spécifique. Par rapport à ce modèle, cinq familles ont été identifiées. Le second axe de travail consiste à proposer un itinéraire agroviticole en relation avec cette classification, basé sur le référentiel national pour la production intégrée de raisins (ITV FRANCE, 2000), et sur les expériences déjà menées en Val de Loire. En fonction de la typologie des sols rencontrés et des différents cépages autorisés, l’adéquation optimale terroir/portegreffe/cépage est recherchée. Le résultat final apparaît sous la forme d’un «Guide des Bonnes Pratiques Vitivinicoles du Val de Loire» pour l’objectif recherché suivant:
«Le bon cépage, au meilleur endroit, pour un type de vin recherché, bien valorisé !»

The valorisation of a terroir through its wine means, first of all, the respect of the corresponding AOC regulations. Secondly, it means one must carefully watch the technical, scientific and social evolutions in order to offer a product more respectable of the environment and society. The research carried out INRA in Angers has led to the UTB concept (Basic Terroir Unit). The UTB defines an homogeneous area for the functioning of the vine. In Anjou, a terrain model “rock type soil, intermediate type and weathered type soil “has been developed, based on the depth of the soil, and its degree of weathering. A first part of the present work is an attempt to classify the major types of the Val de Loire soils. According to the model, five types have been identified. The second part of the work proposes a set of technical itinery in relation to this classification and based on the “integrated grape production” national reference proposed by ITV FRANCE (2000) as well as some experiments conducted in the Loire Valley. According to the soils types and the authorized varieties, an optimal adequacy between the terroir, the rootstock and the variety is sought. The final results will be published in a “Guide: for good practices in the Loire vineyard”. Its unique ambition is to propose some areas for discussion between the vinegrower and his technical partners. All kinds of viticulture, be it conventional, integrated, organic, will be taken into account.
The main objective will be: “The right variety, at the right place, for a well valorised expected type of wine !”

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

D. PASQUINI*, C. ASSELIN** and F. JOURJON***

* D.PASQUINI, Interloire, 12 rue Etienne Fallu – 37019 TOURS CEDEX 01 / ESA Angers 55 rue Rabelais, 49000 Angers
**C. ASSELIN, / Unité vigne et vin, Centre INRA, 42 rue G. Morel 49071 Beaucouzé ou Interloire, 73 rue Plantagenêt, BP 52327, 49023 ANGERS CEDEX 02
*** F. JOURJON, Enseignant chercheur ESA Angers, 55 rue Rabelais, BP 748, 49007 ANGERS

Keywords

Terroir, Viticulture, Val de Loire, Vin, Interprofession
grapevine, soil, quality, Val de Loire, wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Developing a multi-hazard risk index-based insurance for viticulture under climate change

Climate change is increasing the frequency and severity of environmental hazards (e.g., prolonged drought), and even non-extreme climate events (e.g., a period of slightly warmer temperatures) can lead to extreme impacts when they occur simultaneously with other (non-extreme) events.

Effects of the addition of yeast derived products during aging in chardonnay sparkling winemaking

From the beginning of the yeast autolysis process, several interesting intracellular and cell wall constituyents are released to the media providing different characteristics to the wine, being this process extensively studied in sparkling wines due to their important contribution to their properties (1-2). Yeast derived products (YDs) try to emulate the natural yeast autolysis compounds release enhancing the organoleptic characteristics of resulting wines (2-3). This study is a comprehensive evaluation of the impact of the addition of different YDs added to base wine on the chemical, physical and sensory characteristics of the resulting sparkling wines. METHODS: Chardonnay base wine was employed to carry out this study. Three experimental YDs were added at 5 and 10 g/hL to the tirage liqueur: a yeast autolysate (YA), a yeast protein extract (PE) and an inactivated dry yeast from Torulaspora delbrueckii, (TD), and two commercial specific inactivated dry yeast: OPTIMUM WHITE® (OW) and PURE-LONGEVITY®(PL). After second fermentation, measurements were carried out after 3, 6, 9 and 18 months of aging on lees. General enological parameters, proteins, polysaccharides (HPLC-DAD-RID), volatile compounds profile (GC-MS), foaming characteristics (Mosalux), and descriptive sensory analyses were carried out.

Cluster trait prediction using hyperspectral signatures in a population of 221 Riesling clones

Cluster architecture in grapevine plays a critical role in influencing bunch microclimate, thus quality traits, including sugar content, phenolic composition, and disease susceptibility.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Effect of supplementation with inactive yeast during alcoholic fermentation in base wine for sparkling

INTRODUCTION: Foam stability of sparkling wines is significantly favored by the presence of surface active agents such as proteins and polysaccharides [1]. For that reason, the renowned sparkling wines are aged after the second fermentation in contact with the lees for several months (even years). Thereby wines are enriched in these macromolecules due to yeast autolysis. Since this practice is slow and costly, winemakers are seeking for alternative procedures to increase their concentration in base wines. In that sense, the supplementation with inactive yeast during alcoholic fermentation has been proposed [2]. The aim of this study was to determine whether this new strategy is really useful for enriching base wines in macromolecules and for improving foam properties of the base wines.