Terroir 1996 banner
IVES 9 IVES Conference Series 9 The influence of terroir on the quality of wine of the Cahors A.O.C

The influence of terroir on the quality of wine of the Cahors A.O.C

Abstract

[English version below]

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin. Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996). Les résultats ont permis de déterminer les potentialités viticoles et œnologiques de chaque terroir. Des stratégies de gestion de vignoble peuvent être proposées aux vignerons afin de leur permettre la production de vin présentant les meilleurs qualités et typicité en fonction de leurs terroirs.

The aim of this study was to identify terroir-cultivar-wine quality adequations in order to improve the quality and typicity of wines from the “Appellation d’Origine Contrôlée” CAHORS. According to the approach defined by MORLAT and ASSELIN (1992), nine wine terroir units were characterized. Within each of these units, reference plots with homogeneous plant material (Cot or Malbec, the main cultivar, grafted on S04) were identified. These plots were also submitted to the same cultural practices and tillage operations. Furthermore, all the plots were subjected to the same agronomical and enological practices. Results were used to determine the viticultural and enological potentialities of each terroir. Relevant vineyard management strategies can thus be proposed to winegrowers in order to produce wines with the highest quality and typicity in relation to the vineyard terroir.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GARCIA (1); F. LAFFARGUE (2); E. BESNARD (3); H. IBRAHIM (1); A. CADET (1)

(1) Centre de Viticulture et d’Oenologie de Mid i-pyrénées -Avenue de l’Agrobiopole, 31320 Auzeville Tolosane
(2) Maison du Vin de Cahors- 430, Av J. Jaurès, B.P. 199,46004 CAHORS Cedex
(3) Chambre Régionale Agriculture des Pays de la Loire – 61, Avenue J. Joxé- BP 325, 49003 Angers Cedex 01

Keywords

terroir, qualité des vins, nutrition minérale, Cahors, Cot ou Malbec
terroir, quality of wine, plant nutrition, Cahors , Cot or Malbec

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season.

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.

Etude préliminaire des influences pédoclimatiques sur les caractéristiques quali-quantitatives du cépage aglianico dans une zone de la province de benevento-ltalie

The need to classify the vineyards of an area according to the quality of its wines is not recent, but it is only in the last ten years that studies on the suitability of different areas for the cultivation of vineyard take on an integrated and interdisciplinary character (Boselli, 1991). The definition of the suitability of the environment is thus obtained by making the climatic, pedological, topographical and cultural information interact with the vegetative, productive and qualitative expression of the grape varieties.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.