Terroir 1996 banner
IVES 9 IVES Conference Series 9 The influence of terroir on the quality of wine of the Cahors A.O.C

The influence of terroir on the quality of wine of the Cahors A.O.C

Abstract

[English version below]

Dans le but d’améliorer la qualité et la typicité des vins de l’Appellation d’0rigine Contrôlée CAHORS, une étude a été réalisée afin de mettre en évidence l’adéquation Cépage-Terroir- Qualité du vin. Selon la méthodologie proposée par MORLAT et ASSELIN (1992), neuf unités terroirs ont été déterminées. Sur chacune, des parcelles de référence homogènes quant au matériel végétal Cot ou Malbec ( cépage principal de cette appellation greffé sur S04, et aux méthodes culturales, ont été suivies au niveau agronomique et œnologique (GARCIA et al., 1996). Les résultats ont permis de déterminer les potentialités viticoles et œnologiques de chaque terroir. Des stratégies de gestion de vignoble peuvent être proposées aux vignerons afin de leur permettre la production de vin présentant les meilleurs qualités et typicité en fonction de leurs terroirs.

The aim of this study was to identify terroir-cultivar-wine quality adequations in order to improve the quality and typicity of wines from the “Appellation d’Origine Contrôlée” CAHORS. According to the approach defined by MORLAT and ASSELIN (1992), nine wine terroir units were characterized. Within each of these units, reference plots with homogeneous plant material (Cot or Malbec, the main cultivar, grafted on S04) were identified. These plots were also submitted to the same cultural practices and tillage operations. Furthermore, all the plots were subjected to the same agronomical and enological practices. Results were used to determine the viticultural and enological potentialities of each terroir. Relevant vineyard management strategies can thus be proposed to winegrowers in order to produce wines with the highest quality and typicity in relation to the vineyard terroir.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GARCIA (1); F. LAFFARGUE (2); E. BESNARD (3); H. IBRAHIM (1); A. CADET (1)

(1) Centre de Viticulture et d’Oenologie de Mid i-pyrénées -Avenue de l’Agrobiopole, 31320 Auzeville Tolosane
(2) Maison du Vin de Cahors- 430, Av J. Jaurès, B.P. 199,46004 CAHORS Cedex
(3) Chambre Régionale Agriculture des Pays de la Loire – 61, Avenue J. Joxé- BP 325, 49003 Angers Cedex 01

Keywords

terroir, qualité des vins, nutrition minérale, Cahors, Cot ou Malbec
terroir, quality of wine, plant nutrition, Cahors , Cot or Malbec

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.

Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a ‘nebbiolo’ vineyard 

In field conditions, grapevine roots are colonized by arbuscular mycorrhizal fungi (AMF). Little is known about the species composition of AMF communities associated to grapevine.

Bunch placement effects on dehydration kinetics and physico-chemical composition of Nebbiolo grapes

Sforzato di Valtellina DOCG is a special reinforced red wine produced using withered Nebbiolo grapes. The withering process takes place in traditional rooms under natural environmental conditions; it starts immediately after the harvest and ends not before the 1st December of the same year. The process can be performed with different bunch placements that can influence the grapes features.The purpose of the study is to compare the effect on grape physico-chemical parameters for four withering bunch placement systems: hanged clusters (HC), plastic crates (CT), breathable mesh fabric on wooden frames panels (MF), and reed mats (RM). For all the systems studied, the withering length was two months at a temperature between 6 and 19 °C and a relative humidity of 41-88%.

Temperature variability inside a wine production area and its effect on vine phenology and grape ripening. An example from the Saint-Emilion-Pomerol

AIM: the aim of this study was to develop a method for fine-scale temperature zoning. The effect of temperature variability on vine phenology and grape composition was assessed in the production area of Saint-Emilion

Evaluation of viticultural suitability of Arezzo Province (Tuscany)

Dans une région comme la Toscane, zone dans laquelle sont produits certains des meilleurs vins italiens et du monde, la province d’Arezzo a actuellement une importance relativement marginale