Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Abstract

[English version below]

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies. Une carte des terroirs issue d’une approche par l’analyse spatiale géomorpho-pédologique est par ailleurs disponible pour la cave coopérative, munie de son niveau plus détaillé, la carte des unités de pédopaysage. La comparaison des différentes cartes disponibles suggère diverses options applicables aux sélections de vendange. Par ailleurs, l’utilisation de fonctions de pédotransfert a permis d’estimer la réserve utile.

Wine quality needs to be monitored at the detailed local scale of the winery or viticultural farm territory. The territory covered by the cooperative winery of Saint-Hilaire-d’Ozilhan (AOC Côtes-du-Rhône), is a 1 670 hectares-commune area, nearly 310 hectares of which are grown into vine. This winery has been working for nearly a decade on geographical and enological mana gement. Wine-making processes are based on 9 “terroir” land divisions, defined with the substrata indicated in soil map units. Distinct selections of the same unit can lead to different wines, thus indicating the spatial heterogeneity of some of the units defined.
A zoning obtained from soil and landform spatial analysis, is available for this winery from another source, with a detailed soil landscape map. The comparison of the varied documents available may apply to different harvest selections.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. VAUDOUR (1), P. PERNES (1), B. RODRIGUEZ-LOVELLE (2)

(1) Institut National Agronomique Paris-Grignon – UFR AGER/DMOS- Centre de Grignon BP0I – 78850 Thiverval Grignon- France
(2) Syndicat des Vignerons des Côtes-du-Rhône- Maison des Vins – 6, rue des Trois Faucons – 84000 Avignon- France

Contact the author

Keywords

zonage, terroir, niveau communal, cave coop rative, réserve utile
zoning, terroir, local scale, cooperative winery, available water capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Developing effective physiological strategies to rejuvenate virus-infected vineyards by lowering the virus load in infected grapevines

Context and purpose of the study. The wine industries face significant challenges from two highly detrimental viruses: leafroll and red blotch.

La variabilità del colore in vini rosati dell’Italia meridionale

Nei vini rosati, è il colore ad avere il primo impatto con il consumatore. Esso risulterà tanto più accattivante, quanto più elegante e raffinato si presenta.

Hydraulic redistribution and water movement mechanisms in grapevines

Plants have been shown to redistribute water between root sections and soil layers along a gradient of decreasing water availability. One benefit of this hydraulic redistribution is that water can be transported from roots in wet soil to others in dry soil, delaying the onset of water stress and increasing root longevity in dry environments. Grapevines are thought to redistribute water laterally across the trunk from wet to dry portions of the root system. However, it is unknown whether the phloem contributes to such water redistribution.

Amino nitrogen content in grapes: the impact of crop limitation

As an essential element for grapevine development and yield, nitrogen is also involved in the winemaking process and largely affects wine composition. Grape must amino nitrogen deficiency affects the alcoholic fermentation kinetics and alters the development of wine aroma precursors. It is therefore essential to control and optimize nitrogen use efficiency by the plant to guarantee suitable grape nitrogen composition at harvest. Understanding the impact of environmental conditions and cultural practices on the plant nitrogen metabolism would allow us to better orientate our technical choices with the objective of quality and sustainability (less inputs, higher efficiency). This trial focuses on the impact of crop limitation – that is a common practice in European viticulture – on nitrogen distribution in the plant and particularly on grape nitrogen composition. A wide gradient of crop load was set up in a homogeneous plot of Chasselas (Vitis vinifera) in the experimental vineyard of Agroscope, Switzerland. Dry weight and nitrogen dynamics were monitored in the roots, trunk, canopy and grapes, during two consecutive years, using a 15N-labeling method. Grape amino nitrogen content was assessed in both years, at veraison and at harvest. The close relationship between fruits and roots in the maintenance of plant nitrogen balance was highlighted. Interestingly, grape nitrogen concentration remained unchanged regardless of crop load to the detriment of the growth and nitrogen content of the roots. Meanwhile, the size and the nitrogen concentration of the canopy were not affected. Leaf gas exchange rates were reduced in response to lower yield conditions, reducing carbon and nitrogen assimilation and increasing intrinsic water use efficiency. The must amino nitrogen profiles could be discriminated as a function of crop load. These findings demonstrate the impact of plant balance on grape nitrogen composition and contribute to the improvement of predictive models and sustainable cultural practices in perennial crops.

Effect of fungi addition, root preparation, and other factors on the success of vine replacement in an established vineyard

Dead or dying vines must be replaced regularly in order to ensure the sustainability of a vineyard. Successful plant replacement is crucial to maintain yield and quality by encouraging balanced root and leaf development in vines. However, young vines planted within an established vineyard encounter several problems, ranging from poor soil conditions to competition with older vines with well-established root systems.