Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Viticultural zoning applications at the detailed scale of a cooperative winery: terroirs in St­hilaire-d’Ozilhan (AOC Côtes-du-Rhône)

Abstract

[English version below]

La maîtrise de la typicité du vin s’élabore au niveau local ou communal d’une exploitation viticole et/ou d’une cave, unité de vinification. La cave coopérative de Saint-Hilaire­-d’Ozilhan (AOC Côtes-du-Rhône), dont le territoire communal s’étend sur une superficie de 1 670 ha, couvre près de 310 ha cultivés en vigne. Elle réalise des vinifications «au terroir», en utilisant des regroupements d’unités de sol en 9 unités de terroir potentiellement viticoles, définies en s’appuyant sur la parenté des substrats. Diverses sélections d’une même unité peuvent aboutir aussi à des vins différents, ce qui suggère une hétérogénéité spatiale de certaines unités définies. Une carte des terroirs issue d’une approche par l’analyse spatiale géomorpho-pédologique est par ailleurs disponible pour la cave coopérative, munie de son niveau plus détaillé, la carte des unités de pédopaysage. La comparaison des différentes cartes disponibles suggère diverses options applicables aux sélections de vendange. Par ailleurs, l’utilisation de fonctions de pédotransfert a permis d’estimer la réserve utile.

Wine quality needs to be monitored at the detailed local scale of the winery or viticultural farm territory. The territory covered by the cooperative winery of Saint-Hilaire-d’Ozilhan (AOC Côtes-du-Rhône), is a 1 670 hectares-commune area, nearly 310 hectares of which are grown into vine. This winery has been working for nearly a decade on geographical and enological mana gement. Wine-making processes are based on 9 “terroir” land divisions, defined with the substrata indicated in soil map units. Distinct selections of the same unit can lead to different wines, thus indicating the spatial heterogeneity of some of the units defined.
A zoning obtained from soil and landform spatial analysis, is available for this winery from another source, with a detailed soil landscape map. The comparison of the varied documents available may apply to different harvest selections.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

E. VAUDOUR (1), P. PERNES (1), B. RODRIGUEZ-LOVELLE (2)

(1) Institut National Agronomique Paris-Grignon – UFR AGER/DMOS- Centre de Grignon BP0I – 78850 Thiverval Grignon- France
(2) Syndicat des Vignerons des Côtes-du-Rhône- Maison des Vins – 6, rue des Trois Faucons – 84000 Avignon- France

Contact the author

Keywords

zonage, terroir, niveau communal, cave coop rative, réserve utile
zoning, terroir, local scale, cooperative winery, available water capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Assessment of Mineral Elements in Wine Spirits Aged with Chestnut Wood

The mineral composition of wine spirit (WS) is of relevant interest due to its potential effect on physicochemical stability, sensory characteristics, and safety.1 Calcium (Ca) and iron (Fe) can form insoluble compounds, negatively affecting the WS clarity. Transition metals, e.g. Fe and copper (Cu), seem to play an important catalytic role on oxidation reactions involving phenolic compounds and other substrates for oxidation in WS

Differential responses of red and white grape cultivars trained to a single trellis system – the VSP

Commercial grape production relies on training grapevine cultivars onto a variety of trellis systems. Training allows for well-lit leaves and clusters, maximizing fruit quality in addition to facilitating cultivation, harvesting, and diseases control. Although grapevines can be trained onto an infinite variety of trellis systems, most red and white cultivars are trained to the standard VSP (Vertical Shoot Positioning) system. However, red and white cultivars respond differently to VSP in fruit composition and growth characteristics, which are yet to be fully understood. Therefore, the objective of this study was to examine the influence of the VSP trellis system on fruit composition of three red, Cabernet Sauvignon, Merlot and Syrah, and three white, Chardonnay, Riesling, and Gewurztraminer cultivars grown under uniform growing conditions in the same vineyard. All cultivars were monitored for maturity and harvested at their physiologically maximum possible sugar concentration to compare various fruit quality attributes such as Brix, pH, TA, malic and tartaric acids, glucose and fructose, potassium, YAN, and phenolic compounds including total anthocyanins, anthocyanin profile, and tannins. A distinct pattern in fruit composition was observed in each cultivar. In regards to growth characteristics, Syrah grew vigorously with the highest cluster weight. Although all cultivars developed pyriform seeds, the seed size and weight varied among all cultivars. Also varied were mesocarp cell viability, brush morphology, and cane structure. This knowledge of the canopy architectural characteristics assessed by the widely employed fruit compositional attributes and growth characteristics will aid the growers in better management of the vines in varied situations.

Characterization of different clone candidates of xinomavro according to their phenolic composition

Context and purpose of the study ‐ The aim of this study is the examination of wines of 9 different clones of a Greek grape variety Xinomavro, (ΧE1, X19, X22, X28, ΧE2 X30, X31, X35, X36, X37), with regards to their phenolic and anthocyanin content and chemical composition.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.