terclim by ICS banner
IVES 9 IVES Conference Series 9 Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Revisiting the effect of subsurface irrigation and partial rootzone drying on canopy size and yield of Cabernet Sauvignon using remote sensing techniques

Abstract

Irrigation is an essential tool for grape production, especially where rainfall does not meet the optimal water requirements needed to achieve yield and quality targets. Increased evaporative demand of grapevines due to changing climate conditions, and a growing awareness for sustainable farming, require the improvement of irrigation techniques to maximize water use efficiency, i.e. using less water to achieve the same yields or the same water but larger yields. In this study, the performance of Cabernet Sauvignon vines was compared under three irrigation techniques: conventional aboveground drip irrigation, subsurface irrigation installed directly under the vine row, and partial rootzone drying in which two subsurface lines were buried in the middle of the two interrow spacings on each side of the vine row with irrigation alternated between the two lines based on soil moisture content. Equal irrigation was applied to all treatments, at 80% of crop evapotranspiration. Canopy size was measured as fractional cover using UAV-sensed imagery, and yield was mapped spatially with a yield monitor mounted on a harvester. Fractional cover values were larger in vines subjected to partial rootzone drying, while there were no differences between vines receiving conventional irrigation and subsurface irrigation under the vine row. Yield was increased up to 70 % for vines under partial rootzone drying compared to vines receiving conventional drip and under-the-vine subsurface irrigation. A significant increase in water use efficiency was achieved by combining subsurface irrigation and re-locating the drip lines to the interrow spaces, also suggesting treatment-induced modifications to root distribution.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Pietro Previtali1*, Jack Mezger1, Mahyar Aboutalebi1, Luis Sanchez1, Nick Dokoozlian1

1 Winegrowing Research, E. & J. Gallo Winery, Modesto, 95354 CA

Contact the author*

Keywords

canopy size, irrigation techniques, partial rootzone drying, remote sensing, subsurface irrigation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Somatic embryogenesis and organogenesis: driving regeneration forces behind grapevine genetic transformation

Cell pluripotency, enables the possibility to change the cellular fate, stimulating the reorganization and the formation of new vegetative structures from differentiated somatic tissues. Although several factors are implicated in determining the success of a breeding program through the use of modern biotechnological techniques, the definition of a specific regeneration strategy is fundamental to speed up and make these applications feasible.

Ellagitannin profile of red and white wines aged with oak chips

Wine aging with oak chips is nowadays a common alternative to barrel aging, aiming to improve wine quality through the fast extraction of wood derived compounds. From the pool of wood phenols, ellagitannins have been reported to have the most significant impact on the wine’s organoleptic profile. Their final concentration in wines is influenced by several factors, with toasting level considered as one of the most important.

Study of the grape glycosidic aroma precursors by crossing SPE-GC/MS, SPME-GC/MS and LC/QTOF methods

Depending on the variety, grapes contain several chemical classes of aromatic compounds (i.e., terpenols, norisoprenoids, benzenoids) mainly stored as glycosides in berry skin.

Mining terroir influence on bioactive polyphenols from grape stems: A correlation-network-driven approach to spatialize metabolomics data

In viticulture, the concept of terroir is often used to enlighten the environmental-based typicity of grapevines grown in a local area however its scientific basis remains under debate. Grape polyphenols as key player of the plant defense system enables adaptation to environmental changes and so far, form a unique metabolic component to investigate the terroir influence.