Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Abstract

[English version below]

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées. Le croisement d’un type de climat et d’une série de sols est à l’origine de l’identification des Unités de Zonage. Le travail est réalisé à l’échelle d’une oasis sur un ensemble de 31 parcelles viticoles de cépages Syrah qui constitue un réseau de parcelles d’observation, situées dans les différentes vallées de Tulum, Ullum, Zonda et Pedernal. Des aspects concernant les relations entre les indices climatiques, le sol, les variables agronomiques de comportement de la plante et la qualité du raisin et des vins, sont étudiés pour la définition des zones et de leur typicité. A la suite d’une première année d’étude, 16 Unités de Zonages regroupées en 5 grandes zones homogènes ont pu être identifiées dans cette région viticole. Ce travail sera poursuivi pour préciser les résultats et caractériser ces zones.

The viticultural region of San Juan province (Argentina) is characterized by high temperatures during summer with small variations along the day. The knowledge about this environment and its interaction with vineyards and wine can be valorized by the study of its “terroirs” and their characteristics. This study is based on the study of soils and those mesoclimatic zones that are competent for vineyards. The aim is to define agricultural and enological potential of zones. The comparison among different climate and soil data bases leads to the identification of Zoning Units. These units have been elected within the region based on an observatory net of 31 Syrah vineyards. They were located in the valleys of Tulum, Zonda Ullum and Pedemal.
In order to define different Zoning Units and their typicity, relations between climatic indixes, soil characteristics, agronomic variables of the plant behaviours, and the quality of grapes and wines have been studied. Sixteen Zoning Units have yet been identified and gathered in five big homogeneous zores. Further studies are foreseen to precise the results and better characterize these zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GRASSIN, J. NAZRALA, H. VILA, C. TROILO

Station Expérimentale Agronomique (EEA) INTA Mendoza – Av. San Martin 3853 – 5507 Chacras de Coria

Keywords

zonage, vigne, terroir, climat, sol, typicité
zone, grapevine, Terroir, climate, soil, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Canopy microclimate vineyard variability in vineyards of the Lodi region of California, USA

Aim: The aim of this project was to evaluate the microclimatic effects on objective measures of fruit quality within different vigour classes of multiple vineyards and to compare the results across the Lodi region of California, USA.

De novo Vitis champinii whole genome assembly allows rootstock-specific identification of potential candidate genes for drought and salt tolerance

Vitis champinii cultivars Ramsey and Dog-ridge are main choices for rootstocks to adapt viticulture in semi-arid and arid regions thanks to their distinctive tolerance to drought and salinity. However, genetic studies on non-vinifera rootstocks have heavily relied on the grapevine (Vitis vinifera) reference genome, which difficulted the assessment of the genetic variation between rootstock species and grapevines. In the present study, this limitation is addressed by introducing a novo phased genome assembly and annotation of Vitis champinii. This new Vitis champinii genome was employed as reference for mapping RNA-seq reads from the same species under drought and salt stresses, and for comparison the same reads were also mapped to the Vitis vinifera PN40024.V4 reference genome. A significant increase in alignment rate was gained when mapping Vitis champinii RNA-seq reads to its own genome, compared to the Vitis vinifera PN40024.V4 reference genome, thus revealing the expression levels of genes specific to Vitis champinii. Moreover, differences in coding sequences were observed in ortholog genes between Vitis champinii and Vitis vinifera, which therefore challenges previous differential expression analyses performed between contrasting Vitis genotypes on the same gene from the Vitis vinifera genome. Genes with possible implications in drought and salt tolerance have been identified across the genome of Vitis champinii, and the same genomic data can potentially guide the discovery of candidate genes specific from Vitis champinii for other traits of interest, therefore becoming a valuable resource for rootstock breeding designs, specially towards increased drought and salinity due to climate change.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4

α-Terpinyl ethyl ether: stereoselective GC × GC confirmation and identification of its precursors in wine

Wines exhibit profound chemical complexity which arise from a diverse array of compounds that contribute to its sensory profile.

HOW DO ROOTSTOCKS AFFECT CABERNET SAUVIGNON AROMATIC EXPRESSION?

Grape quality potential for wine production is strongly influenced by environmental parameters such as climate and agronomic factors such as rootstock. Several studies underline the effect of rootstock on vegetative growth of the scions [1] and on berry composition [2, 3] with an impact on wine quality. Rootstocks are promising agronomic tools for climate change adaptation and in most grape-growing regions the potential diversity of rootstocks is not fully used and only a few genotypes are planted. Little is known about the effect of rootstock genetic variability on the aromatic composition in wines; thus further investigations are needed.