Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Abstract

[English version below]

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées. Le croisement d’un type de climat et d’une série de sols est à l’origine de l’identification des Unités de Zonage. Le travail est réalisé à l’échelle d’une oasis sur un ensemble de 31 parcelles viticoles de cépages Syrah qui constitue un réseau de parcelles d’observation, situées dans les différentes vallées de Tulum, Ullum, Zonda et Pedernal. Des aspects concernant les relations entre les indices climatiques, le sol, les variables agronomiques de comportement de la plante et la qualité du raisin et des vins, sont étudiés pour la définition des zones et de leur typicité. A la suite d’une première année d’étude, 16 Unités de Zonages regroupées en 5 grandes zones homogènes ont pu être identifiées dans cette région viticole. Ce travail sera poursuivi pour préciser les résultats et caractériser ces zones.

The viticultural region of San Juan province (Argentina) is characterized by high temperatures during summer with small variations along the day. The knowledge about this environment and its interaction with vineyards and wine can be valorized by the study of its “terroirs” and their characteristics. This study is based on the study of soils and those mesoclimatic zones that are competent for vineyards. The aim is to define agricultural and enological potential of zones. The comparison among different climate and soil data bases leads to the identification of Zoning Units. These units have been elected within the region based on an observatory net of 31 Syrah vineyards. They were located in the valleys of Tulum, Zonda Ullum and Pedemal.
In order to define different Zoning Units and their typicity, relations between climatic indixes, soil characteristics, agronomic variables of the plant behaviours, and the quality of grapes and wines have been studied. Sixteen Zoning Units have yet been identified and gathered in five big homogeneous zores. Further studies are foreseen to precise the results and better characterize these zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GRASSIN, J. NAZRALA, H. VILA, C. TROILO

Station Expérimentale Agronomique (EEA) INTA Mendoza – Av. San Martin 3853 – 5507 Chacras de Coria

Keywords

zonage, vigne, terroir, climat, sol, typicité
zone, grapevine, Terroir, climate, soil, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

Correspondence between physiological plant variables and carbon isotope composition in different climate winegrape regions

The climate is the environmental factor that contributes with greater weight in the variability of the yield and the composition of the grape, therefore, it is key in the determination of the typicity of the product. Of the environmental factors, the evolution of water availability conditions, among other things, the biochemical evolution of the compounds of the grape and the type of wine to be elaborated. An integrating parameter of the hydric state of the plant is the carbon isotopic composition (δ13C). This indicator is a useful parameter to characterize the water status during the maturation period and estimate the transpiration efficiency or water use efficiency (EUA) in the vine.

Aroma composition of young and aged Lugana and Verdicchio

AIM Verdicchio and Lugana are two Italian white wines produced in the Marche and Garda lake regions respectively. They are however obtained using grape varieties sharing the same genetic background, locally known as Verdicchio in Marche and Trebbiano di Soave in Garda. Anecdotal evidence suggests that these two wine types exhibit distinctive aroma features. The aim of this work was to explore the existence of a recognizable odour profile for Lugana and Verdicchio, and whether specific aroma chemical markers could be identified. METHODS 13 commercial wines, 6 Lugana and 7 Verdicchio were used. Sensory analysis was done using sorting task methodology, assessing only odor similarities. A total of 53 volatile compounds were identified and quantified GC-MS analysis. Aging behaviors were also evaluated after an accelerated aging at 40 ° C for 3 months. RESULTS HCA analysis of sorting task data identified indeed two groups: one characterized by floral and minty notes and mostly associated with Lugana wines, the other characterized by spicy and toasted aromas and mostly associated with Verdicchio. From a chemical point of view, major differences between the two wines types were observed for cis-3-hexenol, methionol, phenylethyl alcohol, and geraniol.

Wine growing regions global climate analysis

We depict the main features of five viticulture agroclimatic indices for 626 wine growing regions within 41 countries.