Terroir 1996 banner
IVES 9 IVES Conference Series 9 Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Viticultural zoning in the province of San Juan, Argentina. Preliminary results, year 2000

Abstract

[English version below]

La région viticole de San Juan (Argentine) est marquée par des températures très élevées et des variations diurnes faibles. La valorisation de la connaissance de cet environnement et de ses interactions avec le fonctionnement de la vigne et le lien au vin passent par l’étude de ses terroirs et de leur caractérisation. Le point de départ de ce travail est l’étude des zones mésoclimatiques aptes à la culture de la vigne de la Province de San Juan et à la caractérisation des sols de cette même région. L’objectif est de définir le potentiel vitivinicole des zones considérées. Le croisement d’un type de climat et d’une série de sols est à l’origine de l’identification des Unités de Zonage. Le travail est réalisé à l’échelle d’une oasis sur un ensemble de 31 parcelles viticoles de cépages Syrah qui constitue un réseau de parcelles d’observation, situées dans les différentes vallées de Tulum, Ullum, Zonda et Pedernal. Des aspects concernant les relations entre les indices climatiques, le sol, les variables agronomiques de comportement de la plante et la qualité du raisin et des vins, sont étudiés pour la définition des zones et de leur typicité. A la suite d’une première année d’étude, 16 Unités de Zonages regroupées en 5 grandes zones homogènes ont pu être identifiées dans cette région viticole. Ce travail sera poursuivi pour préciser les résultats et caractériser ces zones.

The viticultural region of San Juan province (Argentina) is characterized by high temperatures during summer with small variations along the day. The knowledge about this environment and its interaction with vineyards and wine can be valorized by the study of its “terroirs” and their characteristics. This study is based on the study of soils and those mesoclimatic zones that are competent for vineyards. The aim is to define agricultural and enological potential of zones. The comparison among different climate and soil data bases leads to the identification of Zoning Units. These units have been elected within the region based on an observatory net of 31 Syrah vineyards. They were located in the valleys of Tulum, Zonda Ullum and Pedemal.
In order to define different Zoning Units and their typicity, relations between climatic indixes, soil characteristics, agronomic variables of the plant behaviours, and the quality of grapes and wines have been studied. Sixteen Zoning Units have yet been identified and gathered in five big homogeneous zores. Further studies are foreseen to precise the results and better characterize these zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

M. GRASSIN, J. NAZRALA, H. VILA, C. TROILO

Station Expérimentale Agronomique (EEA) INTA Mendoza – Av. San Martin 3853 – 5507 Chacras de Coria

Keywords

zonage, vigne, terroir, climat, sol, typicité
zone, grapevine, Terroir, climate, soil, typicity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Rootstock regulation of scion phenotypes: the relationship between rootstock parentage and petiole mineral concentration

Grapevine is grown as a graft since the end of the 19th century. Rootstocks not only provide tolerance to Phylloxera but also ensure the supply of water and mineral nutrients to the scion. Rootstocks are an important mean of adaptation to environmental conditions, because the scion controls the typical features of the grapes and wine. However, among the large diversity of rootstocks worldwide, few of them are commercially used in the vineyard. The aim of this study was to investigate the extent to which rootstocks modify the mineral composition of the petioles of the scion. Vitis vinifera cvs. Cabernet-Sauvignon, Pinot noir, Syrah and Ugni blanc were grafted onto 55 different rootstock genotypes and planted in a vineyard as three replicates of 5 vines. Petioles were collected in the cluster zone with 6 replicates per combination. Petiolar concentrations of 13 mineral elements (N, P, K, S, Mg, Ca, Na, B, Zn, Mn, Fe, Cu, Al) at veraison were determined. Scion, rootstock and the interaction explained the same proportion of the phenotypic variance for most mineral elements. Rootstock genotype showed a significant influence on the petiole mineral element composition. Rootstock effect explained from 7 % for Cu to 25 % for S of the variance. The difference of rootstock conferred mineral status is discussed in relation to vigor and fertility. Rootstocks were also genotyped with 23 microsatellite markers. Data were analysed according to genetic groups in order to determine whether the petiole mineral composition could be related to the genetic parentage of the rootstock. Thanks to a highly powerful design, it is the first time that such a large panel of rootstocks grafted with 4 scions has been studied. These results give the opportunity to better characterize the rootstocks and to enlarge the diversity used in the vineyard.

Scientific research for an «Ad Maiora 4.1C» application «A step back towards the future universally sustainable EME4.1C». A concrete example of forward-looking and revolutionary entrepreneurial choices in the vine and wine sector

In 1979 an enlightened and farsighted business owner in an area and in an activity unknown to him and in 120 hectares of land cultivated with corn and wheat expressed to one of us that he wanted to start a business in the wine sector. The first innovative “Vigna Dogarina Scientific Applicative Project” has become famous and harmoniously inserted in and with the “Territoir” of eastern Veneto in northeastern Italy. The revolutionary project allowed one of us: 1. to put into practice results of research related to the applied philosophy, vision, methodology of the “Great MetaEthic Chain 4.1C®” algorithm of the “Conegliano Campus 5.1C®” that considers all material, immaterial, spiritual, technical, economic, environmental, social, existential, relational, ethical, MetaEthical factors with basic indexing in a harmonious chain “ 4.1C®” and application “5.1C®”, 2. to implement:

Rootstock drought tolerance under dry-farmed conditions in Oregon’s Willamette Valley

Rootstocks are used in vineyards worldwide and have been the focus of many studies. However, rootstock performance varies based on regional climates and soil types. As Oregon experiences warmer seasons and variable precipitation patterns, growers are interested in rootstocks with more drought tolerance than the commonly planted rootstocks: 3309C, Riparia Gloire, and 101-14 Mgt. In Oregon’s Willamette Valley, annual precipitation is typically sufficient to make dry-farming possible and use of irrigation is limited.

Differences in metabolism among species and hybrids of the genus Saccharomyces during wine fermentation unveiled by multi-omic analysis 

Yeast species S. cerevisiae, S. uvarum, S. kudriavzevii and their hybrids present clear metabolic differences, even when we compared S. cerevisiae wine versus wild strain. These species and hybrids produced significantly higher amounts of glycerol, organic acids, 2,3-butanediol, and 2-phenyl ethanol and a reduction of the ethanol yield, properties very interesting in the sector to deal with climate change effects. To understand the existing differences, we have used several omics techniques to analyze the dynamics of the (intra- and extracellular) metabolomes and/or transcriptomes of representative strains of S. cerevisiae, S. uvarum, S. kudriavzevii, and hybrids.

Influenza dei fattori dell’ambiente sulla risposta della pianta, e caratteristiche dell’uva della cv tannat prodotta in vigneti di tre zone climatiche dell’Uruguay

Grape typicity valorization can significantly enhance viticultural sector competitiveness to the extent that contributes to the development of a wine so distinctive and unique. This work leads to the characterization of the grapes through indicators expressing environmental effects.