Terroir 1996 banner
IVES 9 IVES Conference Series 9 Use of the stics crop model as a tool to inform vineyard zonages

Use of the stics crop model as a tool to inform vineyard zonages

Abstract

[English version below]

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

STICS is a crop model developed at INRA (France) since 1996. It simulates the carbon, water and nitrogen balances of the crop-soil system driven by daily climatic data. It calculates both agricultural variables (yield in terms of quantity and quality) and environmental variables (water and nitrogen losses). One of the key elements of STICS is its adaptability to various crops (herbaceous, ligneous, annuals, perennials) made possible by the choice of generic parameters and options for both crop physiology and crop techniques. The present work deals first with the particularity of STICS to simulate vineyard in terms of trophic balance, energetic and water functioning and assessment of sugar and water contents of grape. Second it shows the various outputs which can be calculated by the model in order to characterize typical Côtes du Rhône zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

N. BRISSON (1); J.P. GAUDILLERE (2); J.P. RAMEL (3); E. VAUDOUR (4)

(1) INRA Centre d’Avignon, Site d’Agroparc, domaine St Paul, 84914 Avignon
(2) INRA Centre de Bordeaux, 71, avenue Edouard Bourleaux, 33883 Villenave d’Ornon
(3) CIRAME Hameau de Serres, 84 200 Carpentras
(4) INA-PG Centre de Grignon 78850 ThivervaI Grignon

Keywords

modèle de culture, vigne, rendement, teneur en sucre, précocité, vigueur
crop model, vine, yield, sugar content, earliness, vigour

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Grape seed powder as an alternative to bentonite for wine fining

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds

On the meaning of looking for terroir perceptions in blind tastings

If one considers as “physical or sensory attributes” of a wine its concentrations of alcohol and of other substances, it can be stated that another class of attributes exists

The potential of some native varieties of Argentina for the production of sparkling wines. Effect of lees contact time 

Grapevine varieties from South-America, commonly known as criollas, originated because of the natural crossbreeding of grapevine varieties brought by the Spaniards. The objective of this work was to evaluate the potential of some varieties to produce sparkling wines considering the effect of lees contact time. The following varieties were used: Moscatel Rosado, Criolla Chica, Pedro Gimenez, Blanca Oval, Canelón, and the European variety Chardonnay (control), planted in the ampelographic collection of EEA Mendoza INTA (Argentina). Pilot-scale vinifications were carried out to obtain the base wines, in 20 L glass containers. The second fermentation was performed through the traditional method.

Spontaneous fermentation dynamics of indigenous yeast populations and their effect on the sensory properties of Riesling

Varietal Riesling aroma relies strongly on the formation and liberation of bound aroma compounds. Floral monoterpenes, green C6-alcohols, fruity C13-norisoprenoids and spicy volatile phenols are predominantly bound to disaccharides, which are produced and stored in the grape berry during berry maturation. Grape processing aims to extract maximum amount of the precursors from the berry skin to increase the potential for a strong varietal aroma in the wine. Subsequent yeast selection plays an important part in this process.