Terroir 1996 banner
IVES 9 IVES Conference Series 9 Use of the stics crop model as a tool to inform vineyard zonages

Use of the stics crop model as a tool to inform vineyard zonages

Abstract

[English version below]

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

STICS is a crop model developed at INRA (France) since 1996. It simulates the carbon, water and nitrogen balances of the crop-soil system driven by daily climatic data. It calculates both agricultural variables (yield in terms of quantity and quality) and environmental variables (water and nitrogen losses). One of the key elements of STICS is its adaptability to various crops (herbaceous, ligneous, annuals, perennials) made possible by the choice of generic parameters and options for both crop physiology and crop techniques. The present work deals first with the particularity of STICS to simulate vineyard in terms of trophic balance, energetic and water functioning and assessment of sugar and water contents of grape. Second it shows the various outputs which can be calculated by the model in order to characterize typical Côtes du Rhône zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

N. BRISSON (1); J.P. GAUDILLERE (2); J.P. RAMEL (3); E. VAUDOUR (4)

(1) INRA Centre d’Avignon, Site d’Agroparc, domaine St Paul, 84914 Avignon
(2) INRA Centre de Bordeaux, 71, avenue Edouard Bourleaux, 33883 Villenave d’Ornon
(3) CIRAME Hameau de Serres, 84 200 Carpentras
(4) INA-PG Centre de Grignon 78850 ThivervaI Grignon

Keywords

modèle de culture, vigne, rendement, teneur en sucre, précocité, vigueur
crop model, vine, yield, sugar content, earliness, vigour

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties

AOC valorization of terroir nuances at plot scale in Burgundy

In the highly competitive global wine market, Burgundy has a long-established reputation to maintain. The vine and wine sector in Burgundy is based on a five-level ranking of AOC (Appellation d’Origine Contrôlée) wines and of the plots where the grapes are grown.

Interactions of wine polyphenols with dead or living Saccharomyces cerevisiae Yeast Cells and Cell Walls: polyphenol location by microscopy

Tannin, anthocyanins and their reaction products play a major role in the quality of red wines. They contribute to their sensory characteristics, particularly colour and astringency. Grape tannins and anthocyanins are extracted during red wine fermentation. However, their concentration and composition change over time, due to their strong chemical reactivity1. It is also well known that yeasts influence the wine phenolic content, either through the release of metabolites involved in the formation of derived pigments1, or through polyphenol adsorption2,3.

Sustainability as system innovation: sustainability as system innovation: a returnable system for glass wine bottles

Introduction increasing sustainability is essential and a societal challenge, requiring fundamental changes in behaviour and attitudes. This applies to both producers and consumers. For the wine industry in particular, such a change is a major challenge. An eip-agri research project is evaluating the introduction of a returnable glass system in the german wine industry as a key solution for increasing sustainability. Given the need for change associated with a returnable system, the project is theoretically grounded in systems innovation, as this approach provides solutions for complex, transformative change.

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.