Terroir 1996 banner
IVES 9 IVES Conference Series 9 Use of the stics crop model as a tool to inform vineyard zonages

Use of the stics crop model as a tool to inform vineyard zonages

Abstract

[English version below]

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

STICS is a crop model developed at INRA (France) since 1996. It simulates the carbon, water and nitrogen balances of the crop-soil system driven by daily climatic data. It calculates both agricultural variables (yield in terms of quantity and quality) and environmental variables (water and nitrogen losses). One of the key elements of STICS is its adaptability to various crops (herbaceous, ligneous, annuals, perennials) made possible by the choice of generic parameters and options for both crop physiology and crop techniques. The present work deals first with the particularity of STICS to simulate vineyard in terms of trophic balance, energetic and water functioning and assessment of sugar and water contents of grape. Second it shows the various outputs which can be calculated by the model in order to characterize typical Côtes du Rhône zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

N. BRISSON (1); J.P. GAUDILLERE (2); J.P. RAMEL (3); E. VAUDOUR (4)

(1) INRA Centre d’Avignon, Site d’Agroparc, domaine St Paul, 84914 Avignon
(2) INRA Centre de Bordeaux, 71, avenue Edouard Bourleaux, 33883 Villenave d’Ornon
(3) CIRAME Hameau de Serres, 84 200 Carpentras
(4) INA-PG Centre de Grignon 78850 ThivervaI Grignon

Keywords

modèle de culture, vigne, rendement, teneur en sucre, précocité, vigueur
crop model, vine, yield, sugar content, earliness, vigour

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

MAPPING THE CONCENTRATIONS OF GASEOUS ETHANOL IN THE HEADSPACE OF CHAMPAGNE GLASSES THROUGH INFRARED LASER ABSORPTION SPECTROSCOPY

Under standard wine tasting conditions, volatile organic compounds (VOCs) responsible for the wine’s bouquet progressively invade the glass headspace above the wine surface. Most of wines being complex water/ethanol mixtures (with typically 10-15 % ethanol by volume), gaseous ethanol is therefore undoubtedly the most abundant VOC in the glass headspace [1]. Yet, gaseous ethanol is known to have a multimodal influence on wine’s perception [2]. Of particular importance to flavor perception is the effect of ethanol on the release of aroma compounds into the headspace of the beverage [1].

Closing the carbon loop: evaluating the potential of grapevine-derived biochar as a soil conditioner in warm climate vineyards

Significant increases in anthropogenic carbon dioxide (CO2) emissions due to combustion of fossil fuels and intensive land management practices that release CO2 into the atmosphere have resulted in higher air temperatures due to the greenhouse effect.

Towards a unified terroir zoning methodology in viticulture

In viticulture, terroir is a key concept that refers to an area and thus possesses a geographical dimension. Hence, zoning of viticultural terroir is an important issue

Weather classification over the Western Cape (February, 1996 – 2000) and viticultural implications in the Stellenbosch wine district

Une étude préliminaire des situations météorologiques journalières a été réalisée pour l’Afrique du Sud et pour les mois de février (période de maturation des raisins dans la Province occidentale du Cap), à l’image de la classification synoptique réalisée aux latitudes tempérées en France (Jones & Davis, 2000), afin d’étudier les relations entre le climat et la viticulture à des latitudes plus basses.

Effect of multi-level and multi-scale spectral data source on vineyard state assessment

Currently, the main goal of agriculture is to promote the resilience of agricultural systems in a sustainable way through the improvement of use efficiency of farm resources, increasing crop yield and quality under climate change conditions. This last is expected to drastically modify plant growth, with possible negative effects, especially in arid and semi-arid regions of Europe on the viticultural sector. In this context, the monitoring of spatial behavior of grapevine during the growing season represents an opportunity to improve the plant management, winegrowers’ incomes, and to preserve the environmental health, but it has additional costs for the farmer. Nowadays, UAS equipped with a VIS-NIR multispectral camera (blue, green, red, red-edge, and NIR) represents a good and relatively cheap solution to assess plant status spatial information (by means of a limited set of spectral vegetation indices), representing important support in precision agriculture management during the growing season. While differences between UAS-based multispectral imagery and point-based spectroscopy are well discussed in the literature, their impact on plant status estimation by vegetation indices is not completely investigated in depth. The aim of this study was to assess the performance level of UAS-based multispectral (5 bands across 450-800nm spectral region with a spatial resolution of 5cm) imagery, reconstructed high-resolution satellite (Sentinel-2A) multispectral imagery (13 bands across 400-2500 nm with spatial resolution of <2 m) through Convolutional Neural Network (CNN) approach, and point-based field spectroscopy (collecting 600 wavelengths across 400-1000 nm spectral region with a surface footprint of 1-2 cm) in a plant status estimation application, and then, using Bayesian regularization artificial neural network for leaf chlorophyll content (LCC) and plant water status (LWP) prediction. The test site is a Greco vineyard of southern Italy, where detailed and precise records on soil and atmosphere systems, in-vivo plant monitoring of eco-physiological parameters have been conducted.