Terroir 1996 banner
IVES 9 IVES Conference Series 9 Use of the stics crop model as a tool to inform vineyard zonages

Use of the stics crop model as a tool to inform vineyard zonages

Abstract

[English version below]

STICS est un modèle de culture développé à l’INRA (France) depuis 1996. Il simule les bilans de carbone, d’eau et d’azote dans le système culture-sol, piloté par des données climatiques journaliéres. Il calcule à la fois des variables agricoles (rendement en quantité et qualité) et environnementales (pertes en eau et en azote). Une des originalités de STICS est son adaptabilité à de nombreuses cultures (herbacées, ligneuses, annuelles, pérennes) rendue possible par le choix de paramètres génériques et d’options de formalismes. Le travail présenté traite, dans un premier temps, des spécificités de STICS pour la vigne en terme de bilan trophique, de fonctionnement énergétique et hydrique et d’estimation des teneurs en sucre en en eau du raisin. Nous montrons ensuite diverses sorties du modèle qui permettent de caractériser des terroirs du vignoble des Côtes du Rhône.

STICS is a crop model developed at INRA (France) since 1996. It simulates the carbon, water and nitrogen balances of the crop-soil system driven by daily climatic data. It calculates both agricultural variables (yield in terms of quantity and quality) and environmental variables (water and nitrogen losses). One of the key elements of STICS is its adaptability to various crops (herbaceous, ligneous, annuals, perennials) made possible by the choice of generic parameters and options for both crop physiology and crop techniques. The present work deals first with the particularity of STICS to simulate vineyard in terms of trophic balance, energetic and water functioning and assessment of sugar and water contents of grape. Second it shows the various outputs which can be calculated by the model in order to characterize typical Côtes du Rhône zones.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

N. BRISSON (1); J.P. GAUDILLERE (2); J.P. RAMEL (3); E. VAUDOUR (4)

(1) INRA Centre d’Avignon, Site d’Agroparc, domaine St Paul, 84914 Avignon
(2) INRA Centre de Bordeaux, 71, avenue Edouard Bourleaux, 33883 Villenave d’Ornon
(3) CIRAME Hameau de Serres, 84 200 Carpentras
(4) INA-PG Centre de Grignon 78850 ThivervaI Grignon

Keywords

modèle de culture, vigne, rendement, teneur en sucre, précocité, vigueur
crop model, vine, yield, sugar content, earliness, vigour

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Phloem anatomy traits predict maximum sugar accumulation rates

Heat and water stress can accelerate berry sugar accumulation and lead to excessive sugar-to-acid ratios at harvest, producing bland, overly-alcoholic wines. Selecting grapevines for slower sugar accumulation could help maintain wine quality under future, hotter conditions, but these efforts have been stymied by our limited understanding of the traits determining sugar accumulation rates. Here, we measured traits characterizing the structure and anatomy of the sugar transport system – the phloem – in 16 winegrape cultivars and tested for relationships with sugar accumulation rates and cultivar climate classifications.

Effects of ethanol removal techniques on Nero d’Avola wine

Over the past two decades, climate change has contributed to an increase in sugar content in grape must, and consequently, in the ethanol levels of wines.

Phenolic extraction and dissolved oxygen concentration during red wines fermentations with Airmixig M.I.™

During red wine fermentation, the extraction of phenolics compounds and sufficient oxygen provision are critical for wine quality [1,2]. In this trial, we aimed at evaluating the kinetics of phenolic extraction and dissolved oxygen during red wine fermentations using the airmixing system. Twenty lots of red grape musts were fermented in 300.000 L tanks, equipped with airmixing, using two injection regimes (i.e., high and low intensity, and high and low daily frequency). An oxygen analyzer was introduced into the tanks in order to record the concentration of dissolved oxygen over time.

Bioclimatic shifts and land use options for Viticulture in Portugal

Land use, plays a relevant role in the climatic system. It endows means for agriculture practices thus contributing to the food supply. Since climate and land are closely intertwined through multiple interface processes, climate change may lead to significant impacts in land use. In this study, 1-km observational gridded datasets are used to assess changes in the Köppen–Geiger and Worldwide Bioclimatic (WBCS)