Terroir 1996 banner
IVES 9 IVES Conference Series 9 Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Water status, nitrogen status and leaf area/ crop ratio effect on aromatic potential of vitis viniferaberries : example of Sauvignon blanc

Abstract

[English version below]

Les effets de l’état hydrique et de l’alimentation en azote sur le potentiel aromatique des raisins de Sauvignon blanc ont été mesurés sur des vignobles du Bordelais. Les déficits hydriques ont été caractérisés par le potentiel tige déterminé en milieu de journée ΨTmin)­. L’alimentation en azote a été étudiée à partir d’une zone carencée en azote. Une part de cette zone a été supplémentée avec de l’azote minéral. La teneur en précurseurs cystéinylés des raisins varie avec l’état hydrique de la vigne. Comparés à une alimentation en eau non limitative, les déficits hydriques modérés exercent une influence positive sur la teneur en précurseurs cystéinylés des raisins. La correction de la carence en azote a entraîné une forte augmentation des teneurs en précurseurs cystéinylés et en glutathion dans les baies. Inversement, cet apport d’azote a induit une diminution de la teneur en composés phénoliques Un rapport surface foliaire sur rendement élevé exerce une influence positive sur la teneur en précurseurs cystéinylés des baies.

Water status and nitrogen status influence on berries aromatic potential of Vitis vinifera L. cv. Sauvignon blanc have been surveyed in Bordeaux vineyard. Vine water deficit have been measured with the determination of midday stem water potential. Nitrogen status have been surveyed on the basis of deficient vines. Sorne of the vines have been fertilized with mineral nitrogen. S-cysteine conjugates, precursors of the volatile thiols have been determined. Berries precursors content is under the dependence on vine water status. Moderate water deficits have a positive effect on the berries precursors content. The Correction of the nitrogen deficiency provoked a strong increase of berries precursors and glutathion content, whereas the phenolic content decreased. A high leaf area / crop balance has played a positive influence on the berries precursors content.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Xavier CHONÉ (1,2), Valérie LAVIGNE-CRUEGE (1), Virginie MOINE-LEDOUX (1), Philippe CHÉRY (2), Takatoshi TOMINAGA (1), Denis DUBOURDIEU (1)

(1) Faculté d’Oenologie de Bordeaux, Université Bordeaux 2 Victor Ségalen, 351 Crs de la Libération, 33405 Talence Cedex, France
(2) ENITA de Bordeaux, 1 Crs du Général de Gaulle, 33175 Gradignan Cedex, France

Keywords

terroir, vigne, déficit hydrique, potentiel tige, surface foliaire, alimentation en azote, fertilisation, raisins, arômes, précurseurs cystéinylés, thiols, composés réducteurs, glutathion, composés phénoliques.
terroir, vine water deficit, stem water potential, leaf area, nitrogen status, fertilization, varietal aroma, precursors of the volatil thiols, reductive compound, berry glutathion and phenolic content

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Assessing reserve nitrogen at dormancy for predicting spring nitrogen status in Chardonnay grapevines

Nitrogen (N) supply strongly influences vine productivity and berry composition, matching availability and uptake requirements of vines during the growing season is essential to optimize vine nutrition. The nutritional status of grapevines is commonly assessed by the determination of petiole nutrient concentrations at flowering. The reserve N could also be an earlier indicator for grapevine N status, this work aimed to assess how the petiole levels relate to these perennial N reserves.

Colored hail‐nets as a tool to improve vine water status: effects on leaf gas exchange and berry quality in Italia table grape

Protecting table grape vineyards with white hail‐nets is a common practice in Southern Italy. Hail‐nets result in shading effects of 10‐20 %, depending on their density

Sustainable yield management through fruitfulness and bunch architecture manipulation

Vineyards are highly variable and this variation is largely driven by environmental conditions and seasonal variation. For example, warm temperatures

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.

Impact of winemaking processes on wine polysaccharides, improving by qNMR

Today the knowledge in terms of molecular composition of the colloidal matrix is ​​not enough in order to control its stability, according to the number of winemaking and wine stabilization processes. The physico-chemical processes during the winemaking change the composition and quantity of wine macromolecules. The goal today is to determine which analytical techniques will allow to discriminate these winemaking processes in order to better understand their impact on colloidal matrix stability as well as which molecules are responsible for its instabilities. METHODS: Wines obtained after conventional winemaking were subjected to different fining and chemical stabilization treatments. Different methods were used to investigate the wine macromolecular composition and stability after chemical stabilization, including quantitative and qualitative analyzes of total soluble polysaccharides by extraction under acidified ethanol, and by size exclusion separation as well as qNMR metabolomics. RESULTS: Observation of a slight difference at the quantitative level using classical analysis between the winemaking processes was observed as well as a strong discrimination by qNMR metabolomics.