terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Physico-chemical properties of vine pruning residues with potential as enological additive

Physico-chemical properties of vine pruning residues with potential as enological additive

Abstract

Grapes are one of the world’s primary fruit crops, and pruning activities generate high amounts of annual wood wastes [1]. These pruning shoots contain valuable phenolic compounds and could have numerous potential applications [1,2]. Consequently, the aim of this work was to evaluate the physico-chemical properties of vine pruning residues with potential as enological additives. For this purpose, grapevine shoots from 12 varieties grown in Chile were collected during the winter of 2021. Samples were characterized by thermal analysis (TGA and DTG), color analysis, and their phenolic composition was analyzed using spectrophotometric and chromatographic techniques. Then, small pieces of wood samples were subjected to a toasting process, placed in contact with model wines (7 days), and compared against oak wood as a control treatment. The model wines obtained were also analyzed their total phenolic content (Folin-Ciocalteu) and antioxidant activity (DPPH). Thermal analysis showed that grapevine shoots from different cultivars had similar temperature intervals for mass losses, but both their color and phenolic composition varied according to grape variety. Like so, the model wines in contact with toasted oak wood pieces obtained from vine-shoots showed differences in their phenolic content and antioxidant capacity. Besides the prior, other compositional features of the vine shoots and treated model wines would be discussed.

Acknowledgements: Thanks to Consorcio Sur-Subantártico Ci2030-ANID Nº20CEIN2-142146 and FIC project Bip 40.047.041-0 for their financial support, and to Univiveros and CII Viña Concha y Toro for providing the vegetal materials.

References:

1)  Çetin, E.S. et al. (2011).  Chemical composition of grape canes. Ind. Crop Prod., 34, 994–998, DOI 10.1016/j.indcrop.2011.03.004

2)  Aliaño-González, M.J. et al. (2022). Wood waste from fruit trees: Biomolecules and their applications in agri-food industry. Biomolecules 12 238. DOI 10.3390/biom12020238

DOI:

Publication date: October 13, 2023

Issue: ICGWS 2023

Type: Poster

Authors

V. Felipe Laurie1*, Verónica Olate-Olave1,2, Ricardo I. Castro3, Clara Silva1

1Facultad de Ciencias Agrarias, Universidad de Talca, Talca, Chile
2Instituto de Investigación Interdisciplinaria (I3), Universidad de Talca, Talca, Chile
3Multidisciplinary Agroindustry Research Laboratory, Universidad Autónoma de Chile, Talca, Chile

Contact the author*

Keywords

vine pruning shoots, phenolic compounds, waste valorization

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Mycorrhizal symbiosis modulates flavonoid and amino acid profiles in grapes of Tempranillo and Cabernet Sauvignon 

Arbuscular mycorrhizal fungi (AMF) symbiosis is probably the most widespread beneficial interaction between plants and microorganisms. AMF has been widely reported to promote grapevine growth, water and nutrient uptake as well as both biotic and abiotic stress tolerance[1]. However, the impact of AMF on grape composition has been less studied. The aim of this work was to evaluate the effects of the association between two commercial grapevine cultivars (Tempranillo and Cabernet Sauvignon grafted onto 110 rootstock) and AMF on the anthocyanin, flavonol and amino acid concentrations and profiles of grapes.

Investigation of cellulose nanofiber-based films used as a protective layer to reduce absorption of smoke phenols into wine grapes

Volatile phenols from wildfire smoke are absorbed by wine grapes, resulting in undesirable smoky and ashy sensory attributes in the affected wine.[1] Unfortunately the severity of wildfires is increasing, particularly when grapes are ripening on the vine. The unwanted flavors of the wine prompted a need for solutions to prevent the uptake of smoke compounds into wine grapes. Films using cellulose nanofibers as the coating forming matrix were developed as an innovative means to prevent smoke phenols from entering Pinot noir grapes. Different film formulations were tested by incorporating low methoxy pectin or chitosan.

The colour pattern of flower arrangements influence wine tasters’ sensory description

The arrangements of flowers and wine counterparts are inextricably linked. Whether a fundamental aspect of tablescaping or acolytes to broader entertainment rituals, they have an entangled history since ancient times. The aim of this contribution is to verify the influence of visually delicate and robust flower arrangements on individual description of wines. Changes in the sensory description of wines were investigated during subjects’ (thirty-two participants) exposure to three different conditions: the presence of delicate, robust, or totally absent flower arrangements.

The 1000 grapevine genomes project: Cataloguing Australia’s grapevine germplasm

Grapevine cultivars can be unequivocally typed by both physical differences (ampelography) and genetic tests. However due to their very similar characteristics, the identification of clones within a cultivar relies on the accurate tracing of supply records to the point of origin. Such records are not always available or reliable, particularly for older accessions. Whole genome sequencing (WGS) provides the most highly detailed methodology for defining grapevine cultivars and more importantly, this can be extended to differentiating clones within those cultivars.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.