Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zoning methods in relation to the plant

Zoning methods in relation to the plant

Abstract

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances. It is important to note that the management system, resulting from the technical choices of the grower, generally acts on the environmental factors themselves, such as radiation, temperature, water and mineral element flux. Therefore, on one hand the study at the level of the plant is necessary to establish an objective link between the environment and the product, and on the other the observations in the plant concern the same variables as for the environment ; the zoning methods related to the plant must be associated to those concerning the environment, for a precise production.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Alain CARBONNEAU

Chaire de Viticulture et d’œnologie AGRO Montpellier
2 place P. Viala F-34060 Montpellier cedex

Contact the author

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Vegetative dose heights ‘Cabernet Sauvignon’ and its influence on fruit and wine quality

The leaf area is of fundamental importance so that the plant can realize adequate levels of photosynthesis for the accumulation of reserves and to reach a suitable maturation of the berries. In this sense, the objective was to evaluate the effect of different lengths of the stalks from the first support wire, in the must and in the wine of ‘Cabernet Sauvignon’.

Monitoring grapevine downy mildew epidemics with SkySat and PlanetScope imagery

Grapevine downy mildew (GDM), caused by the oomycete Plasmopara viticola, is one of the most destructive diseases of Vitis vinifera worldwide. All V. vinifera cultivars are susceptible to P. viticola infection, and epidemics can spread across an entire vineyard within a matter of weeks. Severe outbreaks cause substantial reductions in yield and fruit quality. Tracking GDM spread by manual scouting is time-consuming and unfeasible over large spatial extents.

Transcriptomic and metabolomic responses to wounding and grafting in grapevine

Grafting plants uses intrinsic healing processes to join two different plants together to create one functional organism. To further our understanding of the molecular changes occurring during graft union formation in grapevine, we characterized the metabolome and transcriptome of intact and wounded cuttings (with and without buds to represent scions and rootstocks respectively), and homo- and heterografts at 0 and 14 days after wounding/grafting. As over-wintering, dormant plant material was grafted, we also characterized the gene expression changes in the wood during bud burst and spring activation of growth. We observed an asymmetrical pattern of gene expression between above and below the graft interface, auxin and sugar related genes were up-regulated above the graft interface, while genes involved in stress responses were up-regulated below the graft interface.

The Bergerac guaranteed vintage area « terroirs »

The vineyard of Bergerac, a guaranteed vintage, is situated in the mid-Lot valley, which has siliceous terraced rows on its hillsides, and on its bordering plateaux, composed of limestone and clay of the tertiary geological eras.

EFFECT OF MICRO-OXYGENATION IN COLOR OF WINES MADE WITH TOASTED VINE-SHOOTS

The use of toasted vine-shoots (SEGs) as an enological tool is a new practice that seeks to improve wines, differentiating them and encouraging sustainable wine production. The micro-oxygenation (MOX) technique is normally combined with alternative oak products with the aim to simulate the oxygen transmission rate that takes place during the traditional barrel aging. Such new use for SEGs implies a reduction in color due to the absorption by the wood of the responsible compounds, therefore, given the known effect that MOX has shown to have on the modification of wine color, its use together with the SEGs could result in an interesting implementation with the aim to obtain final wines with more stable color over time.