Terroir 1996 banner
IVES 9 IVES Conference Series 9 Zoning methods in relation to the plant

Zoning methods in relation to the plant

Abstract

The characterization of the plant is the obliged pathway between the environment and the product. The responses of the plant amplify or reduce the variations of the environment, while determining directly the type and the quality of the products. These results are inscribed inside the Viticultural Terroir Unit (VTU). VTU is the complex interaction between the Basic Terroir Unit or BTU (interaction mesoclimate x soil/subsoil), the genotype (variety x rootstock), the management system, the oenological technologies. Thus, at the most complex level, a global biological triptych is found again : environment (source) x plant (structure) = produced and exchanged substances. It is important to note that the management system, resulting from the technical choices of the grower, generally acts on the environmental factors themselves, such as radiation, temperature, water and mineral element flux. Therefore, on one hand the study at the level of the plant is necessary to establish an objective link between the environment and the product, and on the other the observations in the plant concern the same variables as for the environment ; the zoning methods related to the plant must be associated to those concerning the environment, for a precise production.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Alain CARBONNEAU

Chaire de Viticulture et d’œnologie AGRO Montpellier
2 place P. Viala F-34060 Montpellier cedex

Contact the author

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Mgaloblishvili Rpv29 and Rpv31 loci reveal new insights on downy mildew resistance sources in Vitis vinifera

Downy mildew, a disease caused by Plasmopara viticola (Berk. et Curt.) Berl. and De Toni, is one of the strongest threats to grapevine (Vitis vinifera L.) production. Recently, sources of resistance to downy mildew were identified among Caucasian germplasm. Among them, the Georgian variety Mgaloblishvili revealed a unique resistance mechanism. A genome wide association study (GWAS) allowed the identification of the genetic bases of Mgaloblishvili resistance, the loci Rpv29, Rpv30 and Rpv31. To dissect the three resistance loci, Mgaloblishvili genome was sequenced using PacBio HiFi reads and assembled.

Study of the oenological potential of varieties resistant to cryptogamic diseases and drought to anticipate varietal selection in Occitanie

In the context of climate change and the growing need to reduce the use of phytosanitary products, the exploration of disease-resistant grape varieties and/or adapted to drought conditions is becoming crucial for the wine industry in certain regions of France, such as Occitanie. Currently, exploring the oenological potential of varieties by analyzing their biochemical composition before and after winemaking comes rather late in the varietal selection process.

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.

VOLATILE COMPOSITION OF WINES USING A GC/TOFMS: HS-SPME VS MICRO LLE AS SAMPLE PREPARATION METHODOLOGY

Wine aroma analysis can be done by sensorial or instrumental analysis, the latter involving several me-thodologies based on olfactometric detection, electronic noses or gas chromatography. Gas Chromatography has been widely used for the study of the volatile composition of wines and depending on the detection system coupled to the chromatographic system, quantification and identification of individual compounds can be achieved.

Unraveling grapevine resilience to water and nutrient limitations

Water and nutrient availability significantly impact crop yield, thus the application of sustainable strategies towards efficient water use and nutrient absorption by plants is needed.