Terroir 1996 banner
IVES 9 IVES Conference Series 9 Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Climat et sol: critères d’évaluation et effets sur le comportement de la vigne

Abstract

Le zonage viticole aborde en premier lieu la caractérisation des macroclimats aux échelles des grandes régions, pays, continents ou monde (géoviticulture). La méthodologie de caractérisation climatique et les premières applications au niveau des zones climatiques viticoles, sont présentés par Jorge Tonietto et Alain Carbonneau dans l’article du même ouvrage “Systèmes de Classification Climatique Multicritères (CCM) Géoviticole”, suite aux publications de Tonietto et Carbonneau, 1998a et 1999, et de Tonietto, 1999. Le présent article s’adresse aux échelles du terroir (interaction mésoclimat x sol/sous-sol), de la petite région ou de la parcelle.
Dans une première partie un rappel sera fait de l’influence du climat sur un cycle végétatif moyen de la vigne. Dans une seconde partie les méthodes de caractérisation des sols seront résumées, puis la méthodologie du bilan hydrique potentiel du sol sera approfondie. Dans une troisième partie, sur la base du réseau de terroirs pour le cépage Syrah dans le midi de la France, les principaux éléments de la typicité des vins seront mis en relation avec des variables du climat, du sol et du comportement de la vigne.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A. CARBONNEAU

Professeur de Viticulture AGRO Montpellier
Institut Supérieur de la Vigne et du Vin
2, Place P. Viala
F – 34060 MONTPELLIER Cédex 1

Contact the author

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Towards the definition of a detailed transcriptomic map of grape berry development

In the last years the application of genomic tools to the analysis of gene expression during grape berry development generated a huge amount of transcriptomic data

Managing local field variability in the framework of precision viticulture

Managing grapevines according to the practices of Precision Agriculture (PA), may prove to be an asset in the hands of the modern grape growers.

GRAPE SPIRITS FOR PORT WINE PRODUCTION: SCREENING THEIR AROMA PROFILE

Port is a fortified wine, produced from grapes grown in the demarcated Douro region. The fortification process consists in the addition of a grape spirit (77% v/v) to the fermenting juice for fermentation interruption, resulting in remaining residual sugars in the wine and increased alcohol content (19-22%). The approval of grape spirits follows the Appellation (D.O. Port wine) rules1 and it is currently carried out based on analytical control and on sensory evaluation done by the public Institute that upholds the control of the quality of Douro Appellation wines. However, the producers of Port wines would like to have more information about quality markers of grape spirits.

Additives od aids? Evaluation of aroma compounds release from oenological tannins of different botanical origins.

Oenological tannins are products extracted from various botanical sources, such as mimosa,
acacia, oak gall, quebracho, chestnut and tara. The polyphenolic component is obtained through a solid-liquid extraction also using specific solvents, then removed by evaporation or freeze-drying. Tannins are employed in two phases of winemaking, during the pre-fermentative phase or during fining with different purposes such as modulate antioxidant activity, colour stabilization, bacteriostatic activity, protein stabilization and modulation of sensory properties. To date, the current regulatory framework is not very clear. In fact, the Codex Alimentarius classifies commercial tannins as “food additives” but also as
“processing aids”. The main distinction is that “additives” have a technological function in the final food, whereas “processing aids” do not. In this sense, oenological tannins, despite the technological treatments, could contain aromatic compounds of the botanical species they belong to and release them to the wine.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.