OENO IVAS 2019 banner
IVES 9 IVES Conference Series 9 OENO IVAS 9 OENO IVAS 2019 9 Analysis and composition of grapes, wines, wine spirits 9 A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine

A tool for catching mice in wine: development and application of a method for the detection of mousy off-flavour compounds in wine


Over the past two years, the AWRI has received 69 wine samples suspected of being affected by mousy off-flavour. The character has been mostly observed in white wines. Possible reasons for this could be the increased use of white winemaking techniques such as high grape solids ferments and extended lees ageing to add textural components to white wine, and higher pH, lower sulfur dioxide and minimal clarification or filtration practices. 

Mousy character is an off-flavour in wine that has been described as similar to the smell of caged mice. Although generally infrequent, its detrimental effect on wine quality can cause economic loss to wine producers and, in severe cases, can render wine unpalatable. Mousy off-flavour is a unique wine fault which, due to its chemical nature in wine pH, is rarely perceived by aroma but instead is detected retronasally after affected wine is swallowed or expectorated. There is a wide variation in the ability or sensitivity of individuals to perceive this character, with some tasters unable to perceive it at all. This creates problems for wine producers if they do not have the ability to detect the character during production and therefore do not take remedial action. 

The compounds responsible for this off-flavour in wine reportedly include 2-acetyltetrahydropyridine (ACTPY), 2-acetylpyrroline (ACPY), 2-acetylpyridine (AP) and 2-ethyltetrahydropyridine (ETPY). However, the contribution and importance of these individual compounds to mousiness in spoiled wines has not been demonstrated. The unavailability of a practical and reliable method for the detection and quantification of mousy-related compounds in wine has impeded objective measurement of mousy-affected wines and further research in preventing or reducing the occurrence of this fault in wine. 

The authors have recently developed a HPLC-MS method for the quantitation of ACTPY, ACPY and AP in wine. The method is simple and rapid and requires only filtration and basification for sample preparation. The analytical run time is approximately 17 minutes for one sample. Precision and accuracy tests confirm that the method is highly reliable and robust. The AWRI has implemented the developed method as a tool for the investigation of wines suspected of being affected by mousiness. A description of the method development and its application to off-flavour investigations will be presented and discussed.


Publication date: June 10, 2020

Issue: OENO IVAS 2019

Type: Article


Yoji Hayasaka, Geoff Cowey, Adrian Coulter

The Australian Wine Research Institute, Hartley Grove cnr Paratoo Road, Urrbrae, South Australia 5064, Australia

Contact the author


Off-flavour, Mousiness, HPLC-MS, Wine fault 


IVES Conference Series | OENO IVAS 2019


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.