Terroir 1996 banner
IVES 9 IVES Conference Series 9 Clone performance under different environmental conditions in California

Clone performance under different environmental conditions in California

Abstract

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection of virus-tested clones in Foundation Plant Materials Service (FPMS) at the University of California, Davis. However, release of these certified selections was generally not accompanied by publication of viticultural performance or wine sensory attributes. A present day effort to characterize differences among clones of several cultivars has begun (Wolpert et al, 1995), with the objective of determining the viticultural and enological characteristics of winegrape clones. Research to date has centered on certified selections of Cabernet Sauvignon, Chardonnay, Pinot noir (for sparkling wine) and Zinfandel. In this paper, Cabernet-Sauvignon and Chardonnay performance will be examined in greater detail.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

James A. Wolpert

Department of Viticulture and Enology
University of California
Davis, CA 95616

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

An overview of wine sensory characterization: from classical descriptive analysis to the emergence of novel profiling techniques

The wine industry requires coexistence between tradition and innovation to meet consumers’ preferences. Sensory science allows the objective quantification of consumers’ understanding of a product and subjective feedback of consumer’s perception through acceptance or rejection of stimulus or even describing emotions evoked [1]. To measure sensations, emotions and liking, and their dynamics over time, time-intensity methods are crucial tools with growing interest in sensory science [2].

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Maturation under different SO2 environments: the impact on amino acid and volatile profile for two white wines

EU countries are in the top 16 of the world’s wine producers. To respond to a public health concern, caused by SO2 excessive exposure