Terroir 1996 banner
IVES 9 IVES Conference Series 9 Clone performance under different environmental conditions in California

Clone performance under different environmental conditions in California

Abstract

Clonal evaluation of winegrapes in California has not been extensive. Early selection work by Alley (1977), Olmo (unpublished data) and Goheen (personal communication) resulted in the current collection of virus-tested clones in Foundation Plant Materials Service (FPMS) at the University of California, Davis. However, release of these certified selections was generally not accompanied by publication of viticultural performance or wine sensory attributes. A present day effort to characterize differences among clones of several cultivars has begun (Wolpert et al, 1995), with the objective of determining the viticultural and enological characteristics of winegrape clones. Research to date has centered on certified selections of Cabernet Sauvignon, Chardonnay, Pinot noir (for sparkling wine) and Zinfandel. In this paper, Cabernet-Sauvignon and Chardonnay performance will be examined in greater detail.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

James A. Wolpert

Department of Viticulture and Enology
University of California
Davis, CA 95616

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Validating a portable ad-hoc fluorescence spectrometer for monitoring phenolic compounds during wine fermentation

Phenolic compounds are fundamental to wine quality, influencing its colour, mouthfeel, stability, and ageing
potential [1]. Their extraction and evolution during fermentation plays a crucial role in determining the final sensory
attributes and requires careful monitoring to guide winemaking decisions.

The estimation of the clear-sky effective PAR resources in a mountain area

Irrigation of vineyards is a matter of controversial arguments at areas of high quality wine production. Besides, the effects of the water in the plant are closer related to the water availability than to the irrigation regime.

Impact of monopolar and bipolar pulsed electric fields on the quality of Tinta Roriz wines

Pulsed electric fields (pef) technology holds significant promise for the agrifood industry, considering the capacity of inducing cell electroporation, due to the disruption of cellular membranes. Pef-induced permeabilization is dependent of the chosen treatment protocol (i.e. Pulse shape, electrical field strength, specific energy) and of the matrix’s characteristics (i.e. Cell radii and size, ph, electrical conductivity).

Practical Aspects of Viticultural Zoning In South Africa

Depuis 1973, une commission statutaire administre la législation qui régit le zonage vitivinicole en Afrique du Sud. La province «Le Cap de l’ouest» cerne toutes les zones viticoles sauf quatre unités. Pour la plupart, le Cap de l’ouest a un climat méditerranéen. Les zones viticoles – qui produisent les «vins d’origine» – sont des régions, des districts, des quartiers et des domaines. Les régions sont vastes, séparées par la topographie, par ex. des chaînes de montagnes et des fleuves. Généralement, chaque région représente une zone climatique. Le climat de chaque district est plus homogène. Les quartiers sont exactement délimités par le climat, la topographie et la géologie. Les domaines sont les plus petits. Chaque domaine doit avoir un seul propriétaire.

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023).