Macrowine 2021
IVES 9 IVES Conference Series 9 Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Efficiency of alternative chemical and physical treatments in reducing Brettanomyces Bruxellensis from oak wood

Abstract

Oak barrels form an integral part of wine production, especially that of high quality wines. However, due to its porosity, wood presents an ecological niche for microbial proliferation and is highly susceptible to microbial spoilage which could cause considerable economic losses. Brettanomyces bruxellensis, the most commonly encountered microorganism responsible for spoilage during barrel ageing, can remain in barrels after barrel sanitation to contaminate new batches of wine after refilling. Therefore, effective sanitation treatments are of utmost importance to prevent recurring wine spoilage. Since a moratorium on the use of sulphur dioxide, the most widely used biocide for barrel sanitation, has been issued by the European Commission, there is a drastic need to evaluate alternative sanitation methods. Literature on the effectiveness of barrel sanitation treatments is scattered and presents inconclusive results. Furthermore, all studies have used culture-dependent methods to detect Brettanomyces which has been reported to attain a viable but non-culturable state [1,2]. Therefore, the aim of this study was to evaluate several physical and chemical sanitation treatments in their efficiency to eliminate B. bruxellensis from oak wood. French oak wood was contaminated with different B. bruxellensis strains and subsequently subjected to several chemical and physical sanitation treatments. The methods included, among others, ozone gas, ozonated water, high pressure ultrasound, steam, peracetic acid, sodium percarbonate and microwave. After their extraction from the oak wood, Brettanomyces cells were subjected to a fluorescence-based live/dead staining and detected by means of flow cytometry. The treatments differed greatly in their ability to reduce B. bruxellensis cells with ozone gas showing promising results. Sodium percarbonate and steam treatments were also effective in reducing cells. This study presents the first evaluation of alternative barrel sanitation treatments by flow cytometry, a culture-independent method, and is also the first study to compare an array of barrel sanitation treatments under controlled conditions.

1. Agnolucci, M., Rea, F., Sbrana, C., Cristani, C., Fracassetti, D., Tirelli, A., Nuti, M., 2010. Sulphur dioxide affects culturability and volatile phenol production by Brettanomyces/ Dekkera bruxellensis. International Journal of Food Microbiology 143, 76-80. 2. Serpaggi, V., Remize, F., Recorbet, G., Gaudot-Dumas, E., Sequeira-Le Grand, A., Alexandre, H., 2012. Characterization of the “viable but nonculturable”(VBNC) state in the wine spoilage yeast Brettanomyces. Food Microbiology 30, 438-447.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Engela Kritzinger*, Maren Scharfenberger-Schm, Ulrich Fischer

*DLR Rheinpfalz

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Characterization of various groups of pyranoanthocyanins in Merlot red wine

In red wines, anthocyanins evolve during the wine-making process and ageing. They react with other compounds (such as vinylphenols, acetaldehyde, pyruvic acid…) to form a stable family of compounds called pyranoanthocyanins. Furthermore, the oxidation process can modify the anthocyanic profile of a red wine. It is also interesting to evaluate the occurrence of the different subclasses of pyranoanthocyanins and to characterize their chemical properties. The first objective of this study is to evaluate the occurrence of the different groups of pyranoanthocyanins in an oxidised Merlot wine by a centrifugal partition chromatography strategy. The second goal is to evaluate their relative impact in red wines from Bordeaux region by measuring their concentrations.

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.