Terroir 1996 banner
IVES 9 IVES Conference Series 9 Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Abstract

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.
La zonificación vitícola a pequeña escala representa un avance significativo dentro de la zonificación y encamina su objetivo al estudio de la relación de los factores del medio con las distintas fases de transformación planta-vino.
En este sentido macrozonificación y microzonificación son complementarios. La macrozonificación permite caracterizar cualitativa y cuantitativamente las unidades vitícolas agroambientales sobre las que se desarrollarán los estudios de microzonificación a gran escala, o bien, por las distintas administraciones implicadas (calificación vitícola de unidades) a través de diseño de parcelas experimentales por unidades, o bien, por los viticultores (calificación vitícola de parcelas) mediante la microzonificación de sus parcelas.
La utilización de los estudios de microzonificación es multiple (tabla 3) y permite optimizar el seguimiento de la vid desde la preplantación hasta la producción de vinos de calidad y su importancia radica en el aislamiento y la caracterización de las unidades de manejo.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Vicente Gómez-Miguel, Vicente Sotés Ruíz

Escuela Técnica Superior de Ingenieros Agrónomos de la Universidad Politécnica de Madrid

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Rapid damage assessment and grapevine recovery after fire

There is increasing scientific consensus that climate changeis the underlying cause of the prolonged dry and hot conditions that have increased the risk of extreme fire weather in many countries around the world. In December 2019, a bushfire event occurred in the Adelaide Hills, South Australia where 25,000 hectares were burnt and in vineyards and surrounding areas various degrees of scorching and infrastructure damage occurred. The ability to coordinate and plan recovery after a fire event relies on robust and timely data. The current practice for measuring the scale and distribution of fire damage is to walk or drive the vineyard and score individual vines based on visual observation. The process is time consuming, subjective, or semi-quantitative at best. After the December 2019 fires, it took many months to access properties and estimate the area of vineyard damaged. This study compares the rapid assessment and mapping of fire damage using high-resolution satellite imagery with more traditional ground based measures. Satellite imagery tracking vineyard recovery in the season following the bushfire is being correlated to field assessments of vineyard productivity such as canopy health and development, fertility and carbohydrate storage. Canopy health in the seasons following the fires correlated to the severity of the initial fire damage. Severely damaged vines had reduced canopy growth, were infertile or had very low fertility as well as lower carbohydrate levels in buds and canes during dormancy, which reduced productivity in the seasons following the bushfire event. In contrast, vines that received minor damage were able to recover within 1-2 years. Tools that rapidly and affordably capture the extent and severity of damage over large vineyard area will allow producers, government and industry bodies to manage decisions in relation to fire recovery planning, coordination and delivery, improving the efficiency and effectiveness of their response.

What defines the aging signature of Chasselas wines?

Chasselas is a refined grape variety renowned for its subtlety and its remarkable ability to reflect terroir characteristics [1]. Typically consumed young, it is appreciated for its low acidity and delicate fruity and floral aromas.

Copper contamination in vineyard soils of Bordeaux: spatial risk assessment for the replanting of vines and crops

Copper (Cu) is widely and historically used in viticulture as a fungicide against mildew. Cu has a strong affinity for soil organic matter and accumulates in topsoil horizons. Thus, Cu may negatively affect soil organisms and plants, consequently reducing soil fertility and productivity. The Bordeaux vineyards have the largest vineyard surfaces (26%) within French controlled appellation and a great proportion of French wine production (around 5 million hl per year). Considering the local context of vineyard surfaces decreasing (vine uprooting) and possible new crop plantation, the issue of Cu potential toxicity rises. Therefore, the aims of this work are firstly to evaluate the Cu contamination in vineyard soils of Bordeaux, secondly to produce a risk assessment map for new vine or crop plantation. We used soil analyses from several local studies to build a database with 4496 soil horizon samples. The database was enhanced by means of pedotransfer functions in order to estimate the bioaccessible (EDTA-extractable) Cu in soils of samples without measurements. From this database, 1797 georeferenced samples with CuEDTA concentrations in the topsoil (0-50 cm depth) were used for kriging interpolation in order to produce the spatial distribution map of CuEDTA in vineyard soils. Then, the spatial distribution of Cu was crossed with vine uprooting surfaces and municipality boundaries. CuEDTAconcentrations ranged from 0.52 to 459 mg/kg and showed clear anomalies. Our results from spatial analysis showed that almost 50% of vineyard soil surfaces have CuEDTA concentrations higher than 30 mg/kg (moderate risk for new plantation) and 20% with concentrations higher than 50 mg/kg (high risk for new plantation). A decision-support map based on municipalities was realised to provide a simple tool to stakeholders concerned by land use management.

Wine growing terroirs: management of potential. New issues at stake for AOCs in France

Terroirs represent a heritage that must be studied and managed with appropriate methods; recourse to agronomic and oenological sciences alone is necessary, but is in no way sufficient without the contribution of the humanities.

High-resolution climate modelling for the Cognac region under climate change

Climate change has varied effects across French vineyards, with marked regional differences in temperature shifts. Fine-scale studies highlight significant local climate variability, emphasizing the need for precise regional characterization to adapt vineyard management at the regional scale.