Terroir 1996 banner
IVES 9 IVES Conference Series 9 Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Utilización de los estudios detallados y muy detallados de suelos en la microzonificación vitícola

Abstract

Se justifica la utilización de los mapas de suelos detallados y muy detallados como instrumento fundamental en los estudios de microzonificación.
La zonificación vitícola a pequeña escala representa un avance significativo dentro de la zonificación y encamina su objetivo al estudio de la relación de los factores del medio con las distintas fases de transformación planta-vino.
En este sentido macrozonificación y microzonificación son complementarios. La macrozonificación permite caracterizar cualitativa y cuantitativamente las unidades vitícolas agroambientales sobre las que se desarrollarán los estudios de microzonificación a gran escala, o bien, por las distintas administraciones implicadas (calificación vitícola de unidades) a través de diseño de parcelas experimentales por unidades, o bien, por los viticultores (calificación vitícola de parcelas) mediante la microzonificación de sus parcelas.
La utilización de los estudios de microzonificación es multiple (tabla 3) y permite optimizar el seguimiento de la vid desde la preplantación hasta la producción de vinos de calidad y su importancia radica en el aislamiento y la caracterización de las unidades de manejo.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Vicente Gómez-Miguel, Vicente Sotés Ruíz

Escuela Técnica Superior de Ingenieros Agrónomos de la Universidad Politécnica de Madrid

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Energy optimization of the Charmat-Martinotti refermentation process

The european union has estimated that energy consumption for wine production is about 1,750 million kwh per year, of which 500 million kwh is attributable to italy. In recent years, Italy has emerged as the world’s leading wine producer with about 50 million hectoliters per year. About 20 percent (9.8 million hectoliters) of Italian wine is marketed after refermentation according to the Charmat-Martinotti method.

Role of Grape-Extractable Polyphenols in the Generation of Strecker Aldehydes and in the Instability of Polyfunctional Mercaptans during Wine Oxidation

Wine longevity is a complex multifactor phenomenon in which the weight of the different factors is not well known. One of the key factors of wine longevity is related to its resistance to oxidation. This property can be defined as the ability of the wine, under an exposure to oxygen, to keep its color, avoid accumulation of acetaldehyde and Strecker aldehydes (SA), and keep as long as

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

OENOLOGICAL TANNINS FOR PREVENTING THE LIGHT-STRUCK TASTE IN WHITE AND ROSÉ WINES

The light exposure of wine can be detrimental as a relevant loss of aromas takes place [1] and light-induced reactions can occur. The latter involves riboflavin (RF), a photosensitive compound, that is fully reduced by acquiring two electrons. When the electron-donor is methionine, the light-struck taste (LST) can appear leading to cooked cabbage, onion and garlic odours-like [2]. The use of oenological tannins can limit the appearance of LST in both model wine [3] and white wine [4]. This research aimed to evaluate the impact of certain oenological tannins, selected in a previous study as the most effective against LST [5], in both white and rosé wines.

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.