Mineral wine profile and ai: wine authentication and identification
Abstract
Enhancing the mineral wine profile: from authentication to identification by artificial intelligence for enhanced security. Analysis of a wine’s mineral concentration profile provides a distinctive fingerprint for each cuvée. Unlike organic profiles, this identification signature remains stable over time and can be deciphered using direct analysis by inductively coupled mass spectrometry (icp-ms). With just a few milliliters of wine and rapid preparation, over 40 mineral elements can be identified in concentrations ranging from grams per liter for potassium, to tens of nanograms per liter for metallic ultra-traces, such as lanthanides. This methodology enables us to characterize what we call the wine mineral profile (mwp). Mineral elements play a crucial role in wine terroir, stemming primarily from the soil through the grapes and influenced by various winemaking techniques. However, despite their importance, soil characteristics are often overshadowed by the multitude of subsequent oenological procedures, posing considerable challenges for extracting origin-related information in a conventional context. Our study demonstrates that artificial intelligence (ai) is emerging as an optimal tool for accurately deciphering origin information from wine mineral profile, provided that a sufficient number of mineral elements are measured and a large and comprehensive dataset of wine samples is examined for effective learning. In the course of this study, a dataset comprising over 18,000 mwps was built up in just over a year. Our analysis then focused on the development of a machine-learning method for evaluating wine origin (country, region and appellation) and main grape variety. Six models were tested by comparing the area under the roc curve (auc). Average auc scores above 0.9 for country classification, french wine region and grape variety have already been achieved for multiple identifications of “unknown wines”. This study represents the first comprehensive investigation at this scale involving wine samples, underlining the importance of a comprehensive mwp dataset for ai applications in wine origin verification. Wine authentication with over 99% specificity can already be offered using this approach.
Profilo multiminerale e intelligenza artificiale: autenticazione e identificazione del vino
Migliorare il profilo multiminerale dei vini: dall’autenticazione all’identificazione con l’intelligenza artificiale per una maggiore sicurezza. L’analisi del profilo di concentrazione minerale di un vino fornisce un’impronta digitale distintiva per ogni cuvée. A differenza dei profili organici, questa firma di identificazione (profilo caratteristico) rimane stabile nel tempo e può essere decifrata con un metodo di analisi diretta basato sulla spettrometria di massa ad accoppiamento induttivo (icp-ms). Con pochi millilitri di vino e una rapida preparazione, è possibile identificare più di 40 elementi minerali in concentrazioni che vanno dai grammi per litro per il potassio alle decine di nanogrammi per litro per le ultratracce metalliche, come i lantanidi. Questa metodologia ci permette di caratterizzare quello che chiamiamo il wine mineral profile (mwp). Gli elementi minerali svolgono un ruolo cruciale nel territorio del vino, essendo principalmente derivati dal suolo attraverso l’uva e influenzati da varie tecniche di vinificazione. Tuttavia, nonostante la loro importanza, le caratteristiche del suolo sono spesso oscurate dalla moltitudine di procedure enologiche successive, ponendo notevoli sfide per l’estrazione di informazioni relative all’origine in un contesto convenzionale. Il nostro studio dimostra che l’intelligenza artificiale (ia) sta emergendo come uno strumento ottimale per decifrare accuratamente le informazioni sull’origine dal profilo minerale del vino, a condizione che venga misurato un numero sufficiente di elementi minerali e che venga esaminato un insieme ampio e completo di campioni di vino per un apprendimento efficace. Nel corso di questo studio, in poco più di un anno è stato creato un set di dati comprendente più di 18.000 mwp. La nostra analisi si è poi concentrata sullo sviluppo di un metodo di apprendimento automatico per valutare l’origine del vino (paese, regione e denominazione) e il vitigno principale. Sono stati testati sei modelli confrontando l’area sotto la curva roc (auc). Sono stati raggiunti punteggi medi di auc superiori a 0,9 per la classificazione del paese, della regione vinicola francese e del vitigno per le identificazioni multiple di “vini sconosciuti”. Questo studio rappresenta la prima indagine completa su questa scala che coinvolge campioni di vino, sottolineando l’importanza di un set di dati mwp completo per le applicazioni di ia nella verifica dell’origine del vino. L’autenticazione del vino con una specificità superiore al 99% può già essere offerta utilizzando questo approccio.
Profil multi-minéral et ia : authentification et identification des vins
Valorisation du profil multi-minéral des vins : de l’authentification à l’identification par intelligence artificielle pour une sécurisation renforcée. L’analyse du profil de concentration en éléments minéraux d’un vin offre une empreinte distinctive pour chaque cuvée. Contrairement aux profils organiques, cette signature d’identification reste stable dans le temps et peut être déchiffrée grâce à une méthode d’analyse directe par spectrométrie de masse à couplage inductif (icp-ms). Avec quelques millilitres de vin et une préparation rapide, plus de 40 éléments minéraux peuvent être identifiés dans des concentrations allant de l’ordre du gramme par litre pour le potassium, à des concentrations de quelques dizaines de nanogrammes par litre pour les ultra-traces métalliques, telles que les lanthanides. Cette méthodologie permet de caractériser ce que nous appelons le profil minéral du vin (mwp). Les éléments minéraux jouent un rôle crucial dans le terroir du vin, étant principalement issus du sol à travers les raisins et influencés par diverses techniques de vinification. Cependant, malgré leur importance, les caractéristiques du sol sont souvent occultées par la multitude de procédures œnologiques ultérieures, posant ainsi des défis considérables pour extraire des informations liées à l’origine dans un contexte classique. Notre étude démontre que l’intelligence artificielle (ia) émerge comme un outil optimal pour décrypter avec précision les informations d’origine à partir du profil minéral du vin, à condition qu’un nombre suffisant d’éléments minéraux soient mesurés et qu’un ensemble de données volumineux et complet d’échantillons de vin soit examiné pour un apprentissage efficace. Au cours de cette étude, un ensemble de données comprenant plus de 18 000 mwp a été constitué en un peu plus d’un an. Notre analyse s’est ensuite concentrée sur le développement d’une méthode d’apprentissage automatique pour évaluer l’origine du vin (pays, région et appellation) et le cépage principal. Six modèles ont été testés en comparant l’aire sous la courbe roc (auc). Des scores moyens d’auc supérieurs à 0,9 pour la classification par pays, pour la région viticole française et pour le cépage ont déjà été atteints pour de multiples identifications de « vins inconnus ». Cette étude représente la première investigation complète à cette échelle impliquant des échantillons de vin, soulignant l’importance d’un ensemble de données mwp complet pour les applications d’ia dans la vérification de l’origine du vin. L’authentification d’un vin avec plus de 99% de spécificité peut déjà être proposée grâce à cette approche.
Issue: OIV 2024
Type: Article
Authors
¹ M&Wine, 305 rue des Fours, Fontaines St Martin, France
² Institut Lumière Matière, 10 rue Ada Byron, Villeurbanne, France