Terroir 1996 banner
IVES 9 IVES Conference Series 9 Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Revisión de estudios sobre suelos vitícolas de las tierras del Jerez

Abstract

Dada la importancia de los suelos y de los substratos geológicos en la zonificación vitivinícola, los autores realizan una revisión de estudios sobre las formaciones más importantes en la D.O. Jerez-Xérès-Sherry y Manzanilla-Sanlúcar de Barrameda.
En el concepto de Pago vitícola (PEMARTÍN, 1965; Paneque et al., 1996 a, b, c; González GordOn, 1990; García de LujÁn, 1997) se destaca la singularidad del tipo o clase de suelo, subsuelo y substrato geológico que, conjuntamente con otras circunstancias ambientales, participan e intervienen en su delimitación (Suter y Palacios, 1857), caracterización y funcionamiento (Carbonel y BRAVO, 1820; EchegarAy, 1852; BARBADILLO, 1996).
El marco o región del Jerez y de la Manzanilla representa una de las regiones vitinícolas más antiguas de la Península Ibérica (Sáez fernández, 1995; Hidalgo, 1999). Los suelos citados por Columela como más importantes para el cultivo de la vid (cretosi, sabulosi y palustres) tienen distinta importancia en la calidad del viñedo y del vino, como se manifiesta por algunos autores citados, y especialmente por Boutelou (1807), Fernández Bobadilla (1949), García del Barrio (1972, 1979, 1988) y García de LujÁn (1997). Suelos calizos, silíceos y otros se citan en el Estudio Agrobiológico de la Provincia de Cádiz (CEBAC, 1963) y en el Mapa del INIA (1971), con la descripción morfológica de sus horizontes, la situación en el terreno y la caracterización analítica de los mismos, etc. Sin duda alguna, distintos Calcisols (CL), Cambisols (CB), Vertisols (VR), Leptosols (LP) y otros Grupos de suelos (ISRIC, ISSS, FAO, 1998); y lustrillos, polvillejos y barros rojos sobre albarizas (García del Barrio, 1979) y otros tipos de rocas (GAVALA laborde, 1959; IGME, 1977, 1988), muestran la diversidad de formaciones edafogeológicas en el viñedo del Jerez.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

PANEQUE, G. (1), ROCA, M. (2), PANEQUE, P. (1), PARDO, C. (2), ALDECOA, J. (2)

(1) Departamento de Cristalografía, Mineralogía y Química Agrícola. Facultad de Química. Universidad de Sevilla
(2) Laboratorio de Edafología y Climatología. Escuela Universitaria de Ingeniería Técnica Agrícola. Cortijo de Cuarto. Diputación de Sevilla

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

On-the-go resistivity sensors employment to support soil survey for precision viticulture

There is an increasing need in agriculture to adopt site-specific management (precision farming) because of economic and environmental pressures. Geophysical on-the-go sensors, such as the ARP (Automatic Resistivity Profiling) system, can effectively support soil survey by optimizing sampling density according to the spatial variability of apparent electrical resistivity (ER).

Physiological behavior of the Chasselas grape variety under water deficit: 30 years of experiments in Switzerland

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Arinto clones tolerant to climate change: in depth transcriptomic study of tolerant and sensitive genotypes

Drought and heat waves deriving from climate change have been affecting grapevine plants and altering wine characteristics in the past years, and effects are expected to get worst. Innovative approaches to address this problem have been undertaken in several varieties, that consist in exploring intravarietal variability to identify genotypes that are tolerant to abiotic stress. Such is the case of the variety Arinto, where an experimental population of 165 clones installed according to a resolvable row-column design with 6 replicates, was scanned for several parameters, including surface leaf temperature (SLT). Linear mixed models were fitted to the data of the traits evaluated, and the empirical best linear unbiased predictors (EBLUPs) of genotypic effects for each trait were obtained as well as the coefficient of genotypic variation (CVG) and broad sense heritability.

Responses of grapevine cells to physiological doses of ethanol, among which induced resistance to heat stress

Grapevine naturally endures stresses like heat, drought, and hypoxia. A recent study showed very low oxygen levels inside grape berries, linked to ethanol content.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.